147 research outputs found

    Introduction to the Literature on Semantics

    Get PDF
    An introduction to the literature on semantics. Included are pointers to the literature on axiomatic semantics, denotational semantics, operational semantics, and type theory

    An Algebraic Theory for Shared-State Concurrency

    Get PDF

    Subtyping Context-Free Session Types

    Get PDF
    Context-free session types describe structured patterns of communication on heterogeneously-typed channels, allowing the specification of protocols unconstrained by tail recursion. The enhanced expressive power provided by non-regular recursion comes, however, at the cost of the decidability of subtyping, even if equivalence is still decidable. We present an approach to subtyping context-free session types based on a novel kind of observational preorder we call XYZW\mathcal{XYZW}-simulation, which generalizes XY\mathcal{XY}-simulation (also known as covariant-contravariant simulation) and therefore also bisimulation and plain simulation. We further propose a subtyping algorithm that we prove to be sound, and present an empirical evaluation in the context of a compiler for a programming language. Due to the general nature of the simulation relation upon which it is built, this algorithm may also find applications in other domains.Comment: 34 pages, 6 figures, technical report of a paper published in the conference proceedings of CONCUR 202

    Tealeaves: Structured Monads for Generic First-Order Abstract Syntax Infrastructure

    Get PDF
    Verifying the metatheory of a formal system in Coq involves a lot of tedious "infrastructural" reasoning about variable binders. We present Tealeaves, a generic framework for first-order representations of variable binding that can be used to develop this sort of infrastructure once and for all. Given a particular strategy for representing binders concretely, such as locally nameless or de Bruijn indices, Tealeaves allows developers to implement modules of generic infrastructure called backends that end users can simply instantiate to their own syntax. Our framework rests on a novel abstraction of first-order abstract syntax called a decorated traversable monad (DTM) whose equational theory provides reasoning principles that replace tedious induction on terms. To evaluate Tealeaves, we have implemented a multisorted locally nameless backend providing generic versions of the lemmas generated by LNgen. We discuss case studies where we instantiate this generic infrastructure to simply-typed and polymorphic lambda calculi, comparing our approach to other utilities

    POPLMark reloaded: Mechanizing proofs by logical relations

    Get PDF
    We propose a new collection of benchmark problems in mechanizing the metatheory of programming languages, in order to compare and push the state of the art of proof assistants. In particular, we focus on proofs using logical relations (LRs) and propose establishing strong normalization of a simply typed calculus with a proof by Kripke-style LRs as a benchmark. We give a modern view of this well-understood problem by formulating our LR on well-typed terms. Using this case study, we share some of the lessons learned tackling this problem in different dependently typed proof environments. In particular, we consider the mechanization in Beluga, a proof environment that supports higher-order abstract syntax encodings and contrast it to the development and strategies used in general-purpose proof assistants such as Coq and Agda. The goal of this paper is to engage the community in discussions on what support in proof environments is needed to truly bring mechanized metatheory to the masses and engage said community in the crafting of future benchmarks

    An Analytical Approach to Programs as Data Objects

    Get PDF
    This essay accompanies a selection of 32 articles (referred to in bold face in the text and marginally marked in the bibliographic references) submitted to Aarhus University towards a Doctor Scientiarum degree in Computer Science.The author's previous academic degree, beyond a doctoral degree in June 1986, is an "Habilitation à diriger les recherches" from the Université Pierre et Marie Curie (Paris VI) in France; the corresponding material was submitted in September 1992 and the degree was obtained in January 1993.The present 32 articles have all been written since 1993 and while at DAIMI.Except for one other PhD student, all co-authors are or have been the author's students here in Aarhus

    A type- and scope-safe universe of syntaxes with binding: their semantics and proofs

    Get PDF
    Almost every programming language's syntax includes a notion of binder and corresponding bound occurrences, along with the accompanying notions of alpha-equivalence, capture-avoiding substitution, typing contexts, runtime environments, and so on. In the past, implementing and reasoning about programming languages required careful handling to maintain the correct behaviour of bound variables. Modern programming languages include features that enable constraints like scope safety to be expressed in types. Nevertheless, the programmer is still forced to write the same boilerplate over again for each new implementation of a scope safe operation (e.g., renaming, substitution, desugaring, printing, etc.), and then again for correctness proofs. We present an expressive universe of syntaxes with binding and demonstrate how to (1) implement scope safe traversals once and for all by generic programming; and (2) how to derive properties of these traversals by generic proving. Our universe description, generic traversals and proofs, and our examples have all been formalised in Agda and are available in the accompanying material available online at https://github.com/gallais/generic-syntax

    Non-Deterministic Abstract Machines

    Get PDF
    We present a generic design of abstract machines for non-deterministic programming languages, such as process calculi or concurrent lambda calculi, that provides a simple way to implement them. Such a machine traverses a term in the search for a redex, making non-deterministic choices when several paths are possible and backtracking when it reaches a dead end, i.e., an irreducible subterm. The search is guaranteed to terminate thanks to term annotations the machine introduces along the way. We show how to automatically derive a non-deterministic abstract machine from a zipper semantics - a form of structural operational semantics in which the decomposition process of a term into a context and a redex is made explicit. The derivation method ensures the soundness and completeness of the machines w.r.t. the zipper semantics

    Talking bananas:Structural Recursion for Session Types

    Get PDF
    corecore