55,482 research outputs found

    Improving the Quality of Technology-Enhanced Learning for Computer Programming Courses

    Get PDF
    Teaching computing courses is a major challenge for the majority of lecturers in Libyan higher learning institutions. These courses contain numerous abstract concepts that cannot be easily explained using traditional educational methods. This paper describes the rationale, design, development and implementation stages of an e-learning package (including multimedia resources such as simulations, animations, and videos) using the ASSURE model. This training package can be used by students before they attend practical computer lab sessions, preparing them by developing technical skills and applying concepts and theories presented in lecture through supplementary study and exercises

    Holographic and 3D teleconferencing and visualization: implications for terabit networked applications

    Get PDF
    Abstract not available

    Development Of Information Visualization Methods For Use In Multimedia Applications

    Get PDF
    The aim of the article is development of a technique for visualizing information for use in multimedia applications. In this study, to visualize information, it is proposed first to compile a list of key terms of the subject area and create data tables. Based on the structuring of fragments of the subject area, a visual display of key terms in the form of pictograms, a visual display of key terms in the form of images, and a visual display of data tables are performed. The types of visual structures that should be used to visualize information for further use in multimedia applications are considered. The analysis of existing visual structures in desktop publishing systems and word processors is performed.To build a mechanism for visualizing information about the task as a presentation, a multimedia application is developed using Microsoft Visual Studio software, the C# programming language by using the Windows Forms application programming interface. An algorithm is proposed for separating pieces of information text that have key terms. Tabular data was visualized using the “parametric ruler” metaphorical visualization method, based on the metaphor of a slide rule.The use of the parametric ruler method on the example of data visualization for the font design of children's publications is proposed. Interaction of using the method is ensured due to the fact that the user will enter the size of the size that interests for it and will see the ratio of the values of other parameters. The practical result of the work is the creation of a multimedia application “Visualization of Publishing Standards” for the visualization of information for the font design of publications for children. The result of the software implementation is the finished multimedia applications, which, according to the standardization visualization technique in terms of prepress preparation of publications, is the final product of the third stage of the presentation of the visual for

    A conceptual architecture for interactive educational multimedia

    Get PDF
    Learning is more than knowledge acquisition; it often involves the active participation of the learner in a variety of knowledge- and skills-based learning and training activities. Interactive multimedia technology can support the variety of interaction channels and languages required to facilitate interactive learning and teaching. A conceptual architecture for interactive educational multimedia can support the development of such multimedia systems. Such an architecture needs to embed multimedia technology into a coherent educational context. A framework based on an integrated interaction model is needed to capture learning and training activities in an online setting from an educational perspective, to describe them in the human-computer context, and to integrate them with mechanisms and principles of multimedia interaction

    Toward a Semiotic Framework for Using Technology in Mathematics Education: The Case of Learning 3D Geometry

    Get PDF
    This paper proposes and examines a semiotic framework to inform the use of technology in mathematics education. Semiotics asserts that all cognition is irreducibly triadic, of the nature of a sign, fallible, and thoroughly immersed in a continuing process of interpretation (Halton, 1992). Mathematical meaning-making or meaningful knowledge construction is a continuing process of interpretation within multiple semiotic resources including typological, topological, and social-actional resources. Based on this semiotic framework, an application named VRMath has been developed to facilitate the learning of 3D geometry. VRMath utilises innovative virtual reality (VR) technology and integrates many semiotic resources to form a virtual reality learning environment (VRLE) as well as a mathematical microworld (Edwards, 1995) for learning 3D geometry. The semiotic framework and VRMath are both now being evaluated and will be re-examined continuously

    [Subject benchmark statement]: computing

    Get PDF

    A Multimedia Interactive Environment Using Program Archetypes: Divide-and-Conquer

    Get PDF
    As networks and distributed systems that can exploit parallel computing become more widespread, the need for ways to teach parallel programming effectively grows as well. Even though many colleges and universities provide courses on parallel programming [1], most of those courses are reserved for graduate students and advanced undergraduates. There is a demand for ways to teach fundamental parallel programming concepts to people with just a working knowledge of programming. By using the idea of a software archetype, and providing a learning environment that teaches both concept and coding, we hope to satisfy this need. This paper presents an overview of the multimedia approach we took in teaching parallel programming and offers Divide-and-Conquer as an example of its use

    The future of technology enhanced active learning – a roadmap

    Get PDF
    The notion of active learning refers to the active involvement of learner in the learning process, capturing ideas of learning-by-doing and the fact that active participation and knowledge construction leads to deeper and more sustained learning. Interactivity, in particular learnercontent interaction, is a central aspect of technology-enhanced active learning. In this roadmap, the pedagogical background is discussed, the essential dimensions of technology-enhanced active learning systems are outlined and the factors that are expected to influence these systems currently and in the future are identified. A central aim is to address this promising field from a best practices perspective, clarifying central issues and formulating an agenda for future developments in the form of a roadmap
    corecore