13,373 research outputs found

    Reactive Programming of Simulations in Physics

    Full text link
    We consider the Reactive Programming (RP) approach to simulate physical systems. The choice of RP is motivated by the fact that RP genuinely offers logical parallelism, instantaneously broadcast events, and dynamic creation/destruction of parallel components and events. To illustrate our approach, we consider the implementation of a system of Molecular Dynamics, in the context of Java with the Java3D library for 3D visualisation

    Aspect-oriented interaction in multi-organisational web-based systems

    Get PDF
    Separation of concerns has been presented as a promising tool to tackle the design of complex systems in which cross-cutting properties that do not fit into the scope of a class must be satisfied. Unfortunately, current proposals assume that objects interact by means of object-oriented method calls, which implies that they embed interactions with others into their functional code. This makes them dependent on this interaction model, and makes it difficult to reuse them in a context in which another interaction model is more suited, e.g., tuple spaces, multiparty meetings, ports, and so forth. In this paper, we show that functionality can be described separately from the interaction model used, which helps enhance reusability of functional code and coordination patterns. Our proposal is innovative in that it is the first that achieves a clear separation between functionality and interaction in an aspect-oriented manner. In order to show that it is feasible, we adapted the multiparty interaction model to the context of multiorganisational web-based systems and developed a class framework to build business objects whose performance rates comparably to handmade implementations; the development time, however, decreases significantly.ComisiĂłn Interministerial de Ciencia y TecnologĂ­a TIC2000-1106-C02-0

    Metamorphic Domain-Specific Languages: A Journey Into the Shapes of a Language

    Get PDF
    External or internal domain-specific languages (DSLs) or (fluent) APIs? Whoever you are -- a developer or a user of a DSL -- you usually have to choose your side; you should not! What about metamorphic DSLs that change their shape according to your needs? We report on our 4-years journey of providing the "right" support (in the domain of feature modeling), leading us to develop an external DSL, different shapes of an internal API, and maintain all these languages. A key insight is that there is no one-size-fits-all solution or no clear superiority of a solution compared to another. On the contrary, we found that it does make sense to continue the maintenance of an external and internal DSL. The vision that we foresee for the future of software languages is their ability to be self-adaptable to the most appropriate shape (including the corresponding integrated development environment) according to a particular usage or task. We call metamorphic DSL such a language, able to change from one shape to another shape

    A game-based approach to the teaching of object-oriented programming languages

    Get PDF
    Students often have difficulties when trying to understand the concepts of object-oriented programming (OOP). This paper presents a contribution to the teaching of OOP languages through a game-oriented approach based on the interaction with tangible user interfaces (TUIs). The use of a specific type of commercial distributed TUI (Sifteo cubes), in which several small physical devices have sensing, wireless communication and user-directed output capabilities, is applied to the teaching of the C# programming language, since the operation of these devices can be controlled by user programs written in C#. For our experiment, we selected a sample of students with a sufficient knowledge about procedural programming, which was divided into two groups: The first one had a standard introductory C# course, whereas the second one had an experimental C# course that included, in addition to the contents of the previous one, two demonstration programs that illustrated some OOP basic concepts using the TUI features. Finally, both groups completed two tests: a multiple-choice exam for evaluating the acquisition of basic OOP concepts and a C# programming exercise. The analysis of the results from the tests indicates that the group of students that attended the course including the TUI demos showed a higher interest level (i.e. they felt more motivated) during the course exposition than the one that attended the standard introductory C# course. Furthermore, the students from the experimental group achieved an overall better mark. Therefore, we can conclude that the technological contribution of Sifteo cubes – used as a distributed TUI by which OOP basic concepts are represented in a tangible and a visible way – to the teaching of the C# language has a positive influence on the learning of this language and such basic concepts
    • …
    corecore