1,001 research outputs found

    Acta Cybernetica : Volume 9. Number 2.

    Get PDF

    A grammar based approach towards the automatic implementation of data communication protocols in hardware

    Get PDF

    Entwurf und Implementation einer auf Graph-Grammatiken beruhenden Sprache zur Funktions-Struktur-Modellierung von Pflanzen

    Get PDF
    Increasing biological knowledge requires more and more elaborate methods to translate the knowledge into executable model descriptions, and increasing computational power allows to actually execute these descriptions. Such a simulation helps to validate, extend and question the knowledge. For plant modelling, the well-established formal description language of Lindenmayer systems reaches its limits as a method to concisely represent current knowledge and to conveniently assist in current research. On one hand, it is well-suited to represent structural and geometric aspects of plant models - of which units is a plant composed, how are these connected, what is their location in 3D space -, but on the other hand, its usage to describe functional aspects - what internal processes take place in the plant structure, how does this interact with the structure - is not as convenient as desirable. This can be traced back to the underlying representation of structure as a linear chain of units, while the intrinsic nature of the structure is a tree or even a graph. Therefore, we propose to use graphs and graph grammars as a basis for plant modelling which combines structural and functional aspects. In the first part of this thesis, we develop the necessary theoretical framework. Starting with a presentation of the state of the art concerning Lindenmayer systems and graph grammars, we develop the formalism of relational growth grammars as a variant of graph grammars. We show that this formalism has a natural embedding of Lindenmayer systems which keeps all relevant properties, but represents branched structures directly as axial trees and not as linear chains with indirect encoding of branches. In the second part, we develop the main practical result, the XL programming language as an extension of the Java programming language by very general rule-based features. Short examples illustrate the application of the new language features. We describe the built-in pattern matching algorithm of the implemented run-time system for the XL programming language, and we sketch a possible implementation of an XL compiler. The third part is an application of relational growth grammars and the XL programming language. We show how the general XL interfaces can be customized for relational growth grammars. On top of this customization, several examples from a variety of disciplines demonstrate the usefulness of the developed formalism and language to describe plant growth, especially functional-structural plant models, but also artificial life, architecture or interactive games. Some examples operate on custom graphs like XML DOM trees or scene graphs of commercial 3D modellers, while the majority uses the 3D modelling platform GroIMP, a software developed in conjunction with this thesis. The appendix gives an overview of the GroIMP software. The practical usage of its plug-in for relational growth grammars is also illustrated.Das zunehmende Wissen über biologische Prozesse verlangt nach geeigneten Methoden, es in ausführbare Modelle zu übersetzen, und die zunehmende Rechenleistung der Computer ermöglicht es, diese Modelle auch tatsächlich auszuführen. Solche Simulationen dienen zur Validierung, Erweiterung und Hinterfragung des Wissens. Speziell für die Pflanzenmodellierung wurden Lindenmayer-Systeme mit Erfolg eingesetzt, jedoch stoßen diese bei aktuellen Modellierungsproblemen und Forschungsvorhaben an ihre Grenzen. Zwar sind sie gut geeignet, Pflanzenstruktur und Geometrie abzubilden - aus welchen Einheiten setzt sich eine Pflanze zusammen, wie sind diese verbunden, wie ist ihre räumliche Lage -, aber die lineare Datenstruktur erschwert die Integration von Funktionsmodellen, welche Prozesse innerhalb der verzweigten Struktur und des beanspruchten Raumes beschreiben. Daher wird in dieser Arbeit vorgeschlagen, anstelle der linearen Stuktur Graphen und Graph-Grammatiken als Grundlage für die kombinierte Funktions-Struktur-Modellierung von Pflanzen zu verwenden. Im ersten Teil der Dissertation wird der theoretische Unterbau entwickelt. Nach einer Vorstellung des aktuellen Wissensstandes auf dem Gebiet der Lindenmayer-Systeme und Graph-Grammatiken werden relationale Wachstumsgrammatiken eingeführt, die auf bekannten Mechanismen für parallele Graph-Grammatiken aufbauen und Lindenmayer-Systeme als Spezialfall enthalten, dabei jedoch verzweigte Strukturen direkt als axiale Bäume darstellen. Zur praktischen Anwendung wird im zweiten Teil die Programmiersprache XL entwickelt, die Java um allgemein gehaltene Sprachkonstrukte für Graph-Grammatiken erweitert. Kurze Beispiele zeigen die Anwendung der neuen Sprachmerkmale. Der Algorithmus zur Mustersuche wird erläutert, und die Implementation des XL-Compilers wird vorgestellt. Im dritten Teil werden mögliche Anwendungen relationaler Wachstumsgrammatiken aufgezeigt. Dazu werden zunächst die allgemeinen XL-Schnittstellen für relationale Wachstumsgrammatiken konkretisiert, um dieses System dann für Modelle aus verschiedenen Bereichen zu nutzen, darunter Funktions-Struktur-Modelle von Pflanzen, Künstliches Leben, Architektur und interaktive Spiele. Einige Beispiele nutzen spezifische Graphen wie XML-DOM-Bäume oder Szenengraphen kommerzieller 3D-Modellierprogramme, aber der überwiegende Teil baut auf der 3D-Plattform GroIMP auf, die zusammen mit dieser Dissertation entwickelt wurde. Im Anhang wird die Software GroIMP kurz vorgestellt und ihre praktische Anwendung für relationale Wachstumsgrammatiken erläutert

    Equivalence-Checking on Infinite-State Systems: Techniques and Results

    Full text link
    The paper presents a selection of recently developed and/or used techniques for equivalence-checking on infinite-state systems, and an up-to-date overview of existing results (as of September 2004)

    Reconfigurable Computing Systems for Robotics using a Component-Oriented Approach

    Get PDF
    Robotic platforms are becoming more complex due to the wide range of modern applications, including multiple heterogeneous sensors and actuators. In order to comply with real-time and power-consumption constraints, these systems need to process a large amount of heterogeneous data from multiple sensors and take action (via actuators), which represents a problem as the resources of these systems have limitations in memory storage, bandwidth, and computational power. Field Programmable Gate Arrays (FPGAs) are programmable logic devices that offer high-speed parallel processing. FPGAs are particularly well-suited for applications that require real-time processing, high bandwidth, and low latency. One of the fundamental advantages of FPGAs is their flexibility in designing hardware tailored to specific needs, making them adaptable to a wide range of applications. They can be programmed to pre-process data close to sensors, which reduces the amount of data that needs to be transferred to other computing resources, improving overall system efficiency. Additionally, the reprogrammability of FPGAs enables them to be repurposed for different applications, providing a cost-effective solution that needs to adapt quickly to changing demands. FPGAs' performance per watt is close to that of Application-Specific Integrated Circuits (ASICs), with the added advantage of being reprogrammable. Despite all the advantages of FPGAs (e.g., energy efficiency, computing capabilities), the robotics community has not fully included them so far as part of their systems for several reasons. First, designing FPGA-based solutions requires hardware knowledge and longer development times as their programmability is more challenging than Central Processing Units (CPUs) or Graphics Processing Units (GPUs). Second, porting a robotics application (or parts of it) from software to an accelerator requires adequate interfaces between software and FPGAs. Third, the robotics workflow is already complex on its own, combining several fields such as mechanics, electronics, and software. There have been partial contributions in the state-of-the-art for FPGAs as part of robotics systems. However, a study of FPGAs as a whole for robotics systems is missing in the literature, which is the primary goal of this dissertation. Three main objectives have been established to accomplish this. (1) Define all components required for an FPGAs-based system for robotics applications as a whole. (2) Establish how all the defined components are related. (3) With the help of Model-Driven Engineering (MDE) techniques, generate these components, deploy them, and integrate them into existing solutions. The component-oriented approach proposed in this dissertation provides a proper solution for designing and implementing FPGA-based designs for robotics applications. The modular architecture, the tool 'FPGA Interfaces for Robotics Middlewares' (FIRM), and the toolchain 'FPGA Architectures for Robotics' (FAR) provide a set of tools and a comprehensive design process that enables the development of complex FPGA-based designs more straightforwardly and efficiently. The component-oriented approach contributed to the state-of-the-art in FPGA-based designs significantly for robotics applications and helps to promote their wider adoption and use by specialists with little FPGA knowledge

    Specification of Software Architecture Reconfiguration

    Get PDF
    In the past years, Software Architecture has attracted increased attention by academia and industry as the unifying concept to structure the design of complex systems. One particular research area deals with the possibility of reconfiguring architectures to adapt the systems they describe to new requirements. Reconfiguration amounts to adding and removing components and connections, and may have to occur without stopping the execution of the system being reconfigured. This work contributes to the formal description of such a process. Taking as a premise that a single formalism hardly ever satisfies all requirements in every situation, we present three approaches, each one with its own assumptions about the systems it can be applied to and with different advantages and disadvantages. Each approach is based on work of other researchers and has the aesthetic concern of changing as little as possible the original formalism, keeping its spirit. The first approach shows how a given reconfiguration can be specified in the same manner as the system it is applied to and in a way to be efficiently executed. The second approach explores the Chemical Abstract Machine, a formalism for rewriting multisets of terms, to describe architectures, computations, and reconfigurations in a uniform way. The last approach uses a UNITY-like parallel programming design language to describe computations, represents architectures by diagrams in the sense of Category Theory, and specifies reconfigurations by graph transformation rules

    Dynamic task scheduling and binding for many-core systems through stream rewriting

    Get PDF
    This thesis proposes a novel model of computation, called stream rewriting, for the specification and implementation of highly concurrent applications. Basically, the active tasks of an application and their dependencies are encoded as a token stream, which is iteratively modified by a set of rewriting rules at runtime. In order to estimate the performance and scalability of stream rewriting, a large number of experiments have been evaluated on many-core systems and the task management has been implemented in software and hardware.In dieser Dissertation wurde Stream Rewriting als eine neue Methode entwickelt, um Anwendungen mit einer großen Anzahl von dynamischen Tasks zu beschreiben und effizient zur Laufzeit verwalten zu können. Dabei werden die aktiven Tasks in einem Datenstrom verpackt, der zur Laufzeit durch wiederholtes Suchen und Ersetzen umgeschrieben wird. Um die Performance und Skalierbarkeit zu bestimmen, wurde eine Vielzahl von Experimenten mit Many-Core-Systemen durchgeführt und die Verwaltung von Tasks über Stream Rewriting in Software und Hardware implementiert

    Decomposable Theories

    Full text link
    We present in this paper a general algorithm for solving first-order formulas in particular theories called "decomposable theories". First of all, using special quantifiers, we give a formal characterization of decomposable theories and show some of their properties. Then, we present a general algorithm for solving first-order formulas in any decomposable theory "T". The algorithm is given in the form of five rewriting rules. It transforms a first-order formula "P", which can possibly contain free variables, into a conjunction "Q" of solved formulas easily transformable into a Boolean combination of existentially quantified conjunctions of atomic formulas. In particular, if "P" has no free variables then "Q" is either the formula "true" or "false". The correctness of our algorithm proves the completeness of the decomposable theories. Finally, we show that the theory "Tr" of finite or infinite trees is a decomposable theory and give some benchmarks realized by an implementation of our algorithm, solving formulas on two-partner games in "Tr" with more than 160 nested alternated quantifiers
    corecore