18 research outputs found

    Reconfigurable hardware for the new generation IoT video-cards

    Get PDF
    Dissertação de mestrado em Engenharia Eletrónica Industrial e ComputadoresEmbedded systems became a crucial research and developing area because of the dependence of society on devices and the growing demand for new technology products in our lives. The video industry is an example of remarkable technological advances by exploiting the hardware performance for bringing new video products along with even better video quality and higher resolution. Today is time for Ultra High Definition (UHD) resolution and the next new feature is the 8k. A relevant area that may benefit from 8k is medicine, by improving the detail and image quality in diagnoses. Moreover, Japan is preparing to become the first 8k transmitter at the 2020 Olympics. In spite of existing already general-purpose solutions for managing efficiently UHD video, the deployment of a customized configurable solution can be useful for a specific system needs. Besides, it may dictate market favorable positioning on meeting new market demands by providing faster upgrades. For addressing this problem, this MSc thesis proposes a hardware-based deployment of two essential reconfigurable cores for a new generation IoT UHD Video-Card, for managing huge memory accesses as well as for compressing video. The memory management provides a memory direct access for dealing with variable video resolution up to 8k, as well as data error control, frame alignment, configurable memory region, and more. The video compression is performed by a configurable core based on an open-source H.264 encoder. The results presented show it was achieved 8k real-time video streaming along with extra control and status functionalities. Video encoding was achieved for up to 8k.Os sistemas embebidos tornaram-se uma área fulcral de pesquisa e desenvolvimento devido à dependência da sociedade em dispositivos e à crescente procura por novidades tecnológicas para o quotidiano. A indústria de vídeo é um exemplo do notável avanço tecnológico ao explorar o desempenho máximo do hardware para trazer maior qualidade de vídeo e maior resolução. A resolução de vídeo UHD já é uma realidade e a próxima novidade é o 8k. Uma área de relevo que pode beneficiar do 8k é a medicina, com maior detalhe e qualidade de imagem em diagnósticos. Além disso, o Japão está preparar-se para se tornar o primeiro transmissor de 8k nas Olimpíadas de 2020. Apesar de existirem soluções capazes de gerir com eficiência vídeo UHD, uma solução personalizada e configurável pode ser útil para as necessidades específicas de um sistema. Além disso, pode ditar um posicionamento dianteiro no mercado ao atender às novas exigências do mercado fornecendo novidades mais rapidamente. Como possível solução para os problemas expostos, esta tese propõe o desenvolvimento de dois núcleos de hardware reconfigurável essenciais para uma nova geração de placas IoT de vídeo UHD, para gerir acessos à memória assim como para compactar vídeo. A gestão de memória desenvolvida fornece acesso direto à memória para lidar com resolução de vídeo variável e até 8k, além de controlo de erros de dados, alinhamento de frames, região de memória configurável e muito mais. A compactação de vídeo é realizada por um núcleo de hardware configurável, baseado num Encoder H.264 de código aberto. Os resultados mostram que foi alcançada transmissão de vídeo 8k em tempo real, além de funcionalidades extras de controlo e estado. A codificação de vídeo até 8k foi alcançada

    Efficient Architecture of Variable Size HEVC 2D-DCT for FPGA Platforms

    Get PDF
    This study presents a design of two-dimensional (2D) discrete cosine transform (DCT) hardware architecture dedicated for High Efficiency Video Coding (HEVC) in field programmable gate array (FPGA) platforms. The proposed methodology efficiently proceeds 2D-DCT computation to fit internal components and characteristics of FPGA resources. A four-stage circuit architecture is developed to implement the proposed methodology. This architecture supports variable size of DCT computation, including 4×4, 8×8, 16×16, and 32×32. The proposed architecture has been implemented in System Verilog and synthesized in various FPGA platforms. Compared with existing related works in literature, this proposed architecture demonstrates significant advantages in hardware cost and performance improvement. The proposed architecture is able to sustain 4K@30fps ultra high definition (UHD) TV real-time encoding applications with a reduction of 31-64% in hardware cost

    A Survey on Reconfigurable System-on-Chips

    Get PDF
    The requirements for high performance and low power consumption are becoming more and more inevitable when designing modern embedded systems, especially for the next generation multi-mode multimedia or communication standards. Ultra large-scale integration reconfigurable System-on-Chips (SoCs) have been proposed to achieve not only better performance and lower energy consumption but also higher flexibility and versatility in comparison with the conventional architectures. The unique characteristic of such systems is integration of many types of heterogeneous reconfigurable processing fabrics based on a Network-on-Chip. This paper analyzes and emphasizes the key research trends of the reconfigurable System-on-Chips (SoCs). Firstly, the emerging hardware architecture of SoCs is highlighted. Afterwards, the key issues of designing the reconfigurable SoCs are discussed, with the focus on the challenges when designing reconfigurable hardware fabrics and reconfigurable Network-on-Chips. Finally, some state-of-the-art reconfigurable SoCs are briefly discussed

    Pengkodean Video 3D Pada FPGA Berbasiskan Xilinx Zynq-7000

    Get PDF
    Kebutuhan konsumen terhadap teknologi multimedia yang baru dan lebih handal, menggiring pihak industri untuk meningkatkan pelayanan di bidang pemasaran entertainment, sehingga pada muaranya mendorong popularisasi konten video 3D, perangkat pendukung yang berkemampuan 3D, dan aplikasi-aplikasi 3D. Sebagai fenomena yang terjadi saat ini, smartphone, tablet, dan perangkat mobile lainnya sudah melampaui nilai penjualan PC. Bersamaan dengan semakin populernya video 3D dan diaplikasikan ke perangkat mobile tersebut, mengakibatkan kebutuhan akan penyimpanan, transmisi data, dan tampilan membutuhkan pengkodean yang efisien. High Efficiency Video Coding (HEVC) adalah teknik pengkodean video yang telah didesain menjadi standar untuk banyak aplikasi video dan memiliki kehandalan yang cukup signifikan dari generasi pendahulunya seperti teknik pengkodean H.264. Meskipun HEVC memiliki pengkodean yang sangat efiesien, namun disamping itu memerlukan beban prosesor yang berat dan menjalankan beban yang paralel pada saat pengkodean data yang berisi video. Untuk meningkatkan kehandalan dalam proses encoder, salah satunya dapat dilakukan dengan mengimplementasikan kode HEVC ke Zynq 7000 AP SoC. Diaplikasikan dalam tiga desain yaitu pertama dengan mengimplementasikan kedalam Zynq PS sebagai operasi standalone. Kedua yaitu dengan mengimplementasikan HEVC encoder dalam hardware/software co-design. Dan ketiga, implementasi code HEVC ke Zynq PL, tanpa PS. Dalam implementasi ini digunakan perangkat Xilinx Vivado HLS untuk mengembangkan kode yang dibutuhkan. Nilai hasil yang akan didapatkan adalah waktu yang dibutuhkan untuk pengkodean, PSNR, dan ukuran file hasil pengkodean kemudian akan dibandingkan antara kinerja PC berbasis Linux dengan FPGA Xilinx Zynq-7000. ======================================================================================================================== Consumer demand for new multimedia technologies and more reliable, drove the industry to improve services in the field of entertainment marketing, so that the estuary encourage the popularization of 3D video content, supporting devices 3D capabilities, and 3D applications. As a phenomenon that occurs at this time, smartphones, tablets, and other mobile devices has surpassed the value of PC sales. Along with the growing popularity of 3D video and be applied to the mobile device, resulting in the need for storage, data transmission, and display requires an efficient coding. High Efficiency Video Coding (HEVC) is a video coding technique that has been designed to become the standard for many video applications and has the reliability significantly from the preceding generation such as H.264 coding techniques. Although HEVC has very efiesien coding, but besides that it requires a heavy processor load and run parallel load at the time of encoding data containing the video. To improve reliability in the process of encoder, one of which can be done by implementing a code HEVC to Zynq 7000 AP SoC. Applied in three designs into Zynq first to implement PS as a standalone operation. The second is to implement HEVC encoder in hardware / software co-design. And third, the implementation code HEVC to Zynq PL, without PS. In this implementation Xilinx device is used Vivado HLS to develop the code needed. The value of the results to be obtained is the time required for video encoding, PSNR, and encoded file size that will be compared between the performance of Linux-based PCs with Xilinx Zynq-7000 FPGA

    SIMD based multicore processor for image and video processing

    Get PDF
    制度:新 ; 報告番号:甲3602号 ; 学位の種類:博士(工学) ; 授与年月日:2012/3/15 ; 早大学位記番号:新595

    High-Level Synthesis Based VLSI Architectures for Video Coding

    Get PDF
    High Efficiency Video Coding (HEVC) is state-of-the-art video coding standard. Emerging applications like free-viewpoint video, 360degree video, augmented reality, 3D movies etc. require standardized extensions of HEVC. The standardized extensions of HEVC include HEVC Scalable Video Coding (SHVC), HEVC Multiview Video Coding (MV-HEVC), MV-HEVC+ Depth (3D-HEVC) and HEVC Screen Content Coding. 3D-HEVC is used for applications like view synthesis generation, free-viewpoint video. Coding and transmission of depth maps in 3D-HEVC is used for the virtual view synthesis by the algorithms like Depth Image Based Rendering (DIBR). As first step, we performed the profiling of the 3D-HEVC standard. Computational intensive parts of the standard are identified for the efficient hardware implementation. One of the computational intensive part of the 3D-HEVC, HEVC and H.264/AVC is the Interpolation Filtering used for Fractional Motion Estimation (FME). The hardware implementation of the interpolation filtering is carried out using High-Level Synthesis (HLS) tools. Xilinx Vivado Design Suite is used for the HLS implementation of the interpolation filters of HEVC and H.264/AVC. The complexity of the digital systems is greatly increased. High-Level Synthesis is the methodology which offers great benefits such as late architectural or functional changes without time consuming in rewriting of RTL-code, algorithms can be tested and evaluated early in the design cycle and development of accurate models against which the final hardware can be verified

    A Cost Shared Quantization Algorithm and its Implementation for Multi-Standard Video CODECS

    Get PDF
    The current trend of digital convergence creates the need for the video encoder and decoder system, known as codec in short, that should support multiple video standards on a single platform. In a modern video codec, quantization is a key unit used for video compression. In this thesis, a generalized quantization algorithm and hardware implementation is presented to compute quantized coefficient for six different video codecs including the new developing codec High Efficiency Video Coding (HEVC). HEVC, successor to H.264/MPEG-4 AVC, aims to substantially improve coding efficiency compared to AVC High Profile. The thesis presents a high performance circuit shared architecture that can perform the quantization operation for HEVC, H.264/AVC, AVS, VC-1, MPEG- 2/4 and Motion JPEG (MJPEG). Since HEVC is still in drafting stage, the architecture was designed in such a way that any final changes can be accommodated into the design. The proposed quantizer architecture is completely division free as the division operation is replaced by multiplication, shift and addition operations. The design was implemented on FPGA and later synthesized in CMOS 0.18 μm technology. The results show that the proposed design satisfies the requirement of all codecs with a maximum decoding capability of 60 fps at 187.3 MHz for Xilinx Virtex4 LX60 FPGA of a 1080p HD video. The scheme is also suitable for low-cost implementation in modern multi-codec systems

    Algoritmo de estimação de movimento e sua arquitetura de hardware para HEVC

    Get PDF
    Doutoramento em Engenharia EletrotécnicaVideo coding has been used in applications like video surveillance, video conferencing, video streaming, video broadcasting and video storage. In a typical video coding standard, many algorithms are combined to compress a video. However, one of those algorithms, the motion estimation is the most complex task. Hence, it is necessary to implement this task in real time by using appropriate VLSI architectures. This thesis proposes a new fast motion estimation algorithm and its implementation in real time. The results show that the proposed algorithm and its motion estimation hardware architecture out performs the state of the art. The proposed architecture operates at a maximum operating frequency of 241.6 MHz and is able to process 1080p@60Hz with all possible variables block sizes specified in HEVC standard as well as with motion vector search range of up to ±64 pixels.A codificação de vídeo tem sido usada em aplicações tais como, vídeovigilância, vídeo-conferência, video streaming e armazenamento de vídeo. Numa norma de codificação de vídeo, diversos algoritmos são combinados para comprimir o vídeo. Contudo, um desses algoritmos, a estimação de movimento é a tarefa mais complexa. Por isso, é necessário implementar esta tarefa em tempo real usando arquiteturas de hardware apropriadas. Esta tese propõe um algoritmo de estimação de movimento rápido bem como a sua implementação em tempo real. Os resultados mostram que o algoritmo e a arquitetura de hardware propostos têm melhor desempenho que os existentes. A arquitetura proposta opera a uma frequência máxima de 241.6 MHz e é capaz de processar imagens de resolução 1080p@60Hz, com todos os tamanhos de blocos especificados na norma HEVC, bem como um domínio de pesquisa de vetores de movimento até ±64 pixels

    Towards Computational Efficiency of Next Generation Multimedia Systems

    Get PDF
    To address throughput demands of complex applications (like Multimedia), a next-generation system designer needs to co-design and co-optimize the hardware and software layers. Hardware/software knobs must be tuned in synergy to increase the throughput efficiency. This thesis provides such algorithmic and architectural solutions, while considering the new technology challenges (power-cap and memory aging). The goal is to maximize the throughput efficiency, under timing- and hardware-constraints
    corecore