362 research outputs found

    Integrated Transversal Equalizers in High-Speed Fiber-Optic Systems

    Get PDF
    Intersymbol interference (ISI) caused by intermodal dispersion in multimode fibers is the major limiting factor in the achievable data rate or transmission distance in high-speed multimode fiber-optic links for local area networks applications. Compared with optical-domain and other electrical-domain dispersion compensation methods, equalization with transversal filters based on distributed circuit techniques presents a cost-effective and low-power solution. The design of integrated distributed transversal equalizers is described in detail with focus on delay lines and gain stages. This seven-tap distributed transversal equalizer prototype has been implemented in a commercial 0.18-µm SiGe BiCMOS process for 10-Gb/s multimode fiber-optic links. A seven-tap distributed transversal equalizer reduces the ISI of a 10-Gb/s signal after 800 m of 50-µm multimode fiber from 5 to 1.38 dB, and improves the bit-error rate from about 10^-5 to less than 10^-12

    Design of CMOS transimpedance amplifiers for remote antenna units in fiber-wireless systems.

    Get PDF
    La memoria de la tesis doctoral: Diseño de Amplificadores de Transimpedancia para Unidades de Antena Remota en Sistemas Fibra-Inalámbrico, se presenta en la modalidad de compendio de Publicaciones. A continuación, se expone un resumen del contexto, motivation y objetivos de la tesis.A lo largo de las últimas décadas, los avances tecnológicos y el esfuerzo por desarrollar nuevos sistemas de comunicaciones han crecido al ritmo que la demanda de información aumentaba a nivel mundial. Desde la aparición de Internet, el tráfico global de datos ha incrementado de forma exponencial y se han creado infinidad de aplicaciones y contenidos desde entonces.Con la llegada de la fibra óptica se produjo un avance muy significativo en el campo de las comunicaciones, ya que la fibra de vidrio y sus características fueron la clave para crear redes de largo alcance y alta velocidad. Por otro lado, los avances en las tecnologías de fabricación de circuitos integrados y de dispositivos fotónicos de alta velocidad han encabezado el desarrollo de los sistemas de comunicaciones ópticos, logrando incrementar la tasa de transmisión de datos hasta prácticamente alcanzar el ancho de banda de la fibra óptica.Para conseguir una mayor eficiencia en las comunicaciones y aumentar la tasa de transferencia, se necesitan métodos de modulación complejos que aprovechen mejor el ancho de banda disponible. No obstante, esta mayor complejidad de la modulación de los datos requiere sistemas con mejores prestaciones en cuanto a rango dinámico y linealidad. Estos esquemas de modulación se emplean desde hace tiempo en los sistemas de comunicaciones inalámbricos, donde el ancho de banda del canal, el aire, es extremadamente limitado y codiciado.Actualmente, los sistemas inalámbricos se enfrentan a una saturación del espectro que supone un límite a la tasa de transmisión de datos. Pese a los esfuerzos por extender el rango frecuencial a bandas superiores para aumentar el ancho de banda disponible, se espera un enorme aumento tanto en el número de dispositivos, como en la cantidad de datos demandados por usuario.Ante esta situación se han planteado distintas soluciones para superar estas limitaciones y mejorar las prestaciones de los sistemas actuales. Entre estas alternativas están los sistemas mixtos fibra-inalámbrico utilizando sistemas de antenas distribuidas (DAS). Estos sistemas prometen ser una solución económica y muy efectiva para mejorar la accesibilidad de los dispositivos inalámbricos, aumentando la cobertura y la tasa de transferencia de las redes a la vez que disminuyen las interferencias. El despliegue de los DAS tendrá un gran efecto en escenarios tales como edificios densamente poblados, hospitales, aeropuertos o edificios de oficinas, así como en áreas residenciales, donde un gran número de dispositivos requieren una cada vez mayor interconectividad.Dependiendo del modo de transmisión de los datos a través de la fibra, los sistemas mixtos fibra-inalámbrico se pueden categorizar de tres formas distintas: Banda base sobre fibra (BBoF), radiofrecuencia sobre fibra (RFoF) y frecuencia intermedia sobre fibra (IFoF). Actualmente, el esquema BBoF es el más utilizado para transmisiones de larga y media distancia. No obstante, utilizar este esquema en un DAS requiere unidades de antena remota (RAU) complejas y costosas, por lo que no está claro que esta configuración pueda ser viable en aplicaciones de bajo coste que requieran de un gran número de RAUs. Los sistemas RFoF e IFoF presentan esquemas más simples, sin necesidad de integrar un modulador/demodulador, puesto que la señal se procesa en una estación base y no en las propias RAUs.El desarrollo de esta tesis se enmarca en el estudio de los distintos esquemas de DAS. A lo largo de esta tesis se presentan varias propuestas de amplificadores de transimpedancia (TIA) adecuadas para su implementación en cada uno de los tres tipos de RAU existentes. La versatilidad y el amplio campo de aplicación de este circuito integrado, tanto en comunicaciones como en otros ámbitos, han motivado el estudio de la implementación de este bloque específico en las diferentes arquitecturas de RAU y en otros sistemas, tales como un receptor de televisión por cable (CATV) o una interfaz de un microsensor inercial capacitivo.La memoria de tesis se ha dividido en tres capítulos. El Capítulo 1 se ha empleado para introducir el concepto de los DAS, proporcionando el contexto y la motivación del diseño de las RAU, partiendo desde los principios básicos de operación de los dispositivos fotónicos y electrónicos y presentando las distintas arquitecturas de RAU. El Capítulo 2 supone el núcleo principal de la tesis. En este capítulo se presenta el estudio y diseño de los diferentes TIAs, que han sido optimizados respectivamente para cada una de las configuraciones de RAU, así como para otras aplicaciones. En un tercer capítulo se recogen los resultados más relevantes y se exponen las conclusiones de este trabajo.Tras llevar a cabo la descripción y comparación de las topologías existentes de TIA, se ha llegado a las siguientes conclusiones, las cuales nos llevan a elegir la topología shunt-feedback como la más adecuada para el diseño: - El compromiso entre ancho de banda, transimpedancia, consumo de potencia y ruido es menos restrictivo en los TIAs de lazo cerrado. - Los TIAs de lazo cerrado tienen un mayor número de grados de libertad para acometer su diseño. - Esta topología presenta una mejor linealidad gracias al lazo de realimentación. Si la respuesta frecuencial del núcleo del amplificador se ajusta de manera adecuada, el TIA shunt-feedback puede presentar una respuesta frecuencial plana y estable.En esta tesis, se ha propuesto una nueva técnica de reducción de ruido, aplicable en receptores ópticos con fotodiodos con un área activa grande (~1mm2). Esta estrategia, que se ha llamado la técnica del fotodiodo troceado, consiste en la fabricación del fotodiodo, no como una estructura única, sino como un array de N sub-fotodiodos, que ocuparían la misma área activa que el original. Las principales conclusiones tras hacer un estudio teórico y realizar un estudio de su aplicación en una de las topologías de TIA propuestas son: - El ruido equivalente a la entrada es menor cuanto mayor es el número de sub-fotodiodos, dado que la contribución al ruido que depende con el cuadrado de la frecuencia (f^2) decrece con una dependencia proporcional a N. - Con una aplicación simple de la técnica, replicando el amplificador de tensión del TIA N veces y utilizando N resistencias de realimentación, cada una con un valor N veces el original, la sensibilidad del receptor aumenta aproximadamente en un factor √N y la estabilidad del sistema no se ve afectada. - Al dividir el fotodiodo en N sub-fotodiodos, la capacidad parásita de cada uno de ellos es N veces menor a la original. Con esta nueva capacidad parásita, el diseño del TIA se puede optimizar, consiguiendo una sensibilidad mucho mejor que con un único fotodiodo para el mismo valor de consumo de potencia.Las principales conclusiones respecto a los diseños de los distintos TIAs para comunicaciones son las siguientes: TIA para BBoF: - El TIA propuesto, alcanza, con un consumo de tan solo 2.9 mW, un ancho de banda de 1 GHz y una sensibilidad de -11 dBm, superando las características de trabajos anteriores en condiciones similares (capacidad del fotodiodo, tecnología y tasa de transmisión). - La técnica del fotodiodo troceado se ha aplicado a este circuito, consiguiendo una mejora de hasta 7.9 dBm en la sensibilidad para un diseño optimizado de 16 sub-fotodiodos, demostrando, en una simulación a nivel de transistor, que la técnica propuesta funciona correctamente. TIA para RFoF: - El diseño propuesto logra una figura de mérito superior a la de trabajos previos, gracias a la combinación de su bajo consumo de potencia y su mayor transimpedancia. - Además, mientras que en la mayoría de trabajos previos no se integra un control de ganancia en el TIA, esta propuesta presenta una transimpedancia controlable desde 45 hasta 65 dBΩ. A través de un sistema de control simultáneo de la transimpedancia y de la ganancia en lazo abierto del amplificador de voltaje, se consigue garantizar una respuesta frecuencial plana y estable en todos los estados de transimpedancia, que le otorga al diseño una superior versatilidad y flexibilidad. TIA para CATV: - Se ha adaptado una versión del TIA para RFoF para demostrar la capacidad de adaptación de esta estructura en una implementación en un receptor CATV con un rango de control de transimpedancia de 18 dB. - Con la implementación del control de ganancia en el TIA, no es necesario el uso de un atenuador variable en el receptor, simplificando así el número de etapas del mismo. - Gracias al control de transimpedancia, el TIA logra rangos de entrada similares a los publicados en trabajos anteriores basados en una tecnología mucho menos accesible como GaAs PHEMT. TIA para IFoF Se ha fabricado un chip en una tecnología CMOS de 65 nm que opera a 1.2 V de tensión de alimentación y se ha realizado su caracterización eléctrica y óptica. - El TIA presenta una programabilidad de su transimpedancia con un control lineal en dB entre 60 y 76 dBΩ mediante un código termómetro de 4 bits. - El ancho de banda se mantiene casi constante en todo el rango de transimpedancia, entre 500 y 600 MHz.Como conclusión general tras comparar el funcionamiento de los TIAs para las distintas configuraciones de RAU, vale la pena mencionar que el TIA para IFoF consigue una figura de mérito muy superior a la de otros trabajos previos diseñados para RFoF. Esto se debe principalmente a la mayor transimpedancia y al muy bajo consumo de potencia del TIA para IFoF propuesto. Además, se consigue una mejor linealidad, ya que, para una transmisión de 54 Mb/s con el estándar 802.11a, se consigue un EVM menor de 2 % en un rango de entrada de 10 dB, comparado con los entre 3 y 5 dB reportados en trabajos previos. El esquema IFoF presenta un gran potencial y ventajas frente al RFoF, lo que lo coloca como una buena alternativa para disminuir los costes y mejorar el rendimiento de los sistemas de antenas distribuidas.Por último, cabe destacar que el diseño de TIA propuesto y fabricado para IFoF contribuye en gran medida al desarrollo y validación de una RAU completa. Se ha demostrado la capacidad de la estructura propuesta para alcanzar un bajo ruido, alta linealidad, simplicidad en la programabilidad de la transimpedancia y adaptabilidad de la topología para diferentes requisitos, lo cual es de un gran interés en el diseño de receptores ópticos.Por otra parte, una versión del TIA para su uso en una interfaz de sensores MEMS capacitivos se ha propuesto y estudiado. Consiste en un convertidor capacidad-voltaje basado en una versión del TIA para RFoF, con el objetivo de conseguir un menor ruido y proveer de una adaptabilidad para diferentes sensores capacitivos. Los resultados más significativos y las conclusiones de este diseño se resumen a continuación: - El TIA presenta un control de transimpedancia con un rango de 34 dB manteniendo el ancho de banda constante en 1.2 MHz. También presenta un control independiente del ancho de banda, desde 75 kHz hasta 1.2 MHz, manteniendo la transimpedancia fija en un valor máximo. - Con un consumo de potencia de tan solo 54 μW, el TIA alcanza una sensibilidad máxima de 1 mV/fF, que corresponde a una sensibilidad de 4.2 mV/g y presenta un ruido de entrada de tan solo 100 µg/√("Hz" ) a 50 kHz en la configuración de máxima transimpedancia.La principal conclusión que destaca de este diseño es su versatilidad y flexibilidad. El diseño propuesto permite adaptar fácilmente la respuesta de la interfaz a una amplia gama de dispositivos sensores, ya que se puede ajustar el ancho de banda para ajustarse a distintas frecuencias de operación, así como la transimpedancia puede ser modificada para conseguir distintas sensibilidades. Este doble control independiente de ancho de banda y transimpedancia le proporcionan una adaptabilidad completa al TIA.<br /

    GNPy model of the physical layer for open and disaggregated optical networking [Invited]

    Get PDF
    Networking technologies are fast evolving to support the request for ubiquitous Internet access that is becoming a fundamental need for the modern and inclusive society, with a dramatic speed-up caused by the COVID-19 emergency. Such evolution needs the development of networks into disaggregated and programmable systems according to the software-defined networking (SDN) paradigm. Wavelength-division multiplexed (WDM) optical transmission and networking is expanding as physical layer technology from core and metro networks to 5G x-hauling and inter- and intra-data-center connections requiring the application of the SDN paradigm at the optical layer based on the WDM optical data transport virtualization. We present the fundamental principles of the open-source project Gaussian Noise in Python (GNPy) for the optical transport virtualization in modeling the WDM optical transmission for open and disaggregated networking. GNPy approximates transparent lightpaths as additive white and Gaussian noise channels and can be used as a vendor-agnostic digital twin for open network planning and management. The quality-of-transmission degradation of each network element is independently modeled to allow disaggregated network management. We describe the GNPy models for fiber propagation, optical amplifiers, and reconfigurable add/drop multiplexers together with modeling of coherent transceivers from the back-to-back characterization. We address the use of GNPy as a vendor-agnostic design and planning tool and as physical layer virtualization in software-defined optical networking. (C) 2022 Optica Publishing Grou

    Optical receivers for upstream traffic in next-generation passive optical networks

    Get PDF

    Spatially integrated erbium-doped fiber amplifiers enabling space-division multiplexing

    Get PDF
    L'augmentation exponentielle de la demande de bande passante pour les communications laisse présager une saturation prochaine de la capacité des réseaux de télécommunications qui devrait se matérialiser au cours de la prochaine décennie. En effet, la théorie de l’information prédit que les effets non linéaires dans les fibres monomodes limite la capacité de transmission de celles-ci et peu de gain à ce niveau peut être espéré des techniques traditionnelles de multiplexage développées et utilisées jusqu’à présent dans les systèmes à haut débit. La dimension spatiale du canal optique est proposée comme un nouveau degré de liberté qui peut être utilisé pour augmenter le nombre de canaux de transmission et, par conséquent, résoudre cette menace de «crise de capacité». Ainsi, inspirée par les techniques micro-ondes, la technique émergente appelée multiplexage spatial (SDM) est une technologie prometteuse pour la création de réseaux optiques de prochaine génération. Pour réaliser le SDM dans les liens de fibres optiques, il faut réexaminer tous les dispositifs intégrés, les équipements et les sous-systèmes. Parmi ces éléments, l'amplificateur optique SDM est critique, en particulier pour les systèmes de transmission pour les longues distances. En raison des excellentes caractéristiques de l'amplificateur à fibre dopée à l'erbium (EDFA) utilisé dans les systèmes actuels de pointe, l'EDFA est à nouveau un candidat de choix pour la mise en œuvre des amplificateurs SDM pratiques. Toutefois, étant donné que le SDM introduit une variation spatiale du champ dans le plan transversal de la fibre, les amplificateurs à fibre dopée à l'erbium spatialement intégrés (SIEDFA) nécessitent une conception soignée. Dans cette thèse, nous examinons tout d'abord les progrès récents du SDM, en particulier les amplificateurs optiques SDM. Ensuite, nous identifions et discutons les principaux enjeux des SIEDFA qui exigent un examen scientifique. Suite à cela, la théorie des EDFA est brièvement présentée et une modélisation numérique pouvant être utilisée pour simuler les SIEDFA est proposée. Sur la base d'un outil de simulation fait maison, nous proposons une nouvelle conception des profils de dopage annulaire des fibres à quelques-modes dopées à l'erbium (ED-FMF) et nous évaluons numériquement la performance d’un amplificateur à un étage, avec fibre à dopage annulaire, à ainsi qu’un amplificateur à double étage pour les communications sur des fibres ne comportant que quelques modes. Par la suite, nous concevons des fibres dopées à l'erbium avec une gaine annulaire et multi-cœurs (ED-MCF). Nous avons évalué numériquement le recouvrement de la pompe avec les multiples cœurs de ces amplificateurs. En plus de la conception, nous fabriquons et caractérisons une fibre multi-cœurs à quelques modes dopées à l'erbium. Nous réalisons la première démonstration des amplificateurs à fibre optique spatialement intégrés incorporant de telles fibres dopées. Enfin, nous présentons les conclusions ainsi que les perspectives de cette recherche. La recherche et le développement des SIEDFA offriront d'énormes avantages non seulement pour les systèmes de transmission future SDM, mais aussi pour les systèmes de transmission monomode sur des fibres standards à un cœur car ils permettent de remplacer plusieurs amplificateurs par un amplificateur intégré.The exponential increase of communication bandwidth demand is giving rise to the so-called ‘capacity crunch’ expected to materialize within the next decade. Due to the nonlinear limit of the single mode fiber predicted by the information theory, all the state-of-the-art techniques which have so far been developed and utilized in order to extend the optical fiber communication capacity are exhausted. The spatial domain of the lightwave links is proposed as a new degree of freedom that can be employed to increase the number of transmission paths and, subsequently, overcome the looming ‘capacity crunch’. Therefore, the emerging technique named space-division multiplexing (SDM) is a promising candidate for creating next-generation optical networks. To realize SDM in optical fiber links, one needs to investigate novel spatially integrated devices, equipment, and subsystems. Among these elements, the SDM amplifier is a critical subsystem, in particular for the long-haul transmission system. Due to the excellent features of the erbium-doped fiber amplifier (EDFA) used in current state-of-the-art systems, the EDFA is again a prime candidate for implementing practical SDM amplifiers. However, since the SDM introduces a spatial variation of the field in the transverse plane of the optical fibers, spatially integrated erbium-doped fiber amplifiers (SIEDFA) require a careful design. In this thesis, we firstly review the recent progress in SDM, in particular, the SDM optical amplifiers. Next, we identify and discuss the key issues of SIEDFA that require scientific investigation. After that, the EDFA theory is briefly introduced and a corresponding numerical modeling that can be used for simulating the SIEDFA is proposed. Based on a home-made simulation tool, we propose a novel design of an annular based doping profile of few-mode erbium-doped fibers (FM-EDF) and numerically evaluate the performance of single stage as well as double-stage few-mode erbium-doped fiber amplifiers (FM-EDFA) based on such fibers. Afterward, we design annular-cladding erbium-doped multicore fibers (MC-EDF) and numerically evaluate the cladding pumped multicore erbium-doped fiber amplifier (MC-EDFA) based on these fibers as well. In addition to fiber design, we fabricate and characterize a multicore few-mode erbium-doped fiber (MC-FM-EDF), and perform the first demonstration of the spatially integrated optical fiber amplifiers incorporating such specialty doped fibers. Finally, we present the conclusions as well as the perspectives of this research. In general, the investigation and development of the SIEDFA will bring tremendous benefits not only for future SDM transmission systems but also for current state-of-the-art single-mode single-core transmission systems by replacing plural amplifiers by one integrated amplifier

    Enhancing Digital Controllability in Wideband RF Transceiver Front-Ends for FTTx Applications

    Get PDF
    Enhancing the digital controllability of wideband RF transceiver front-ends helps in widening the range of operating conditions and applications in which such systems can be employed. Technology limitations and design challenges often constrain the extensive adoption of digital controllability in RF front-ends. This work focuses on three major aspects associated with the design and implementation of a digitally controllable RF transceiver front-end for enhanced digital control. Firstly, the influence of the choice of semiconductor technology for a system-on-chip integration of digital gain control circuits are investigated. The digital control of gain is achieved by utilizing step attenuators that consist of cascaded switched attenuation stages. A design methodology is presented to evaluate the influence of the chosen technology on the performance of the three conventionally used switched attenuator topologies for desired attenuation levels, and the constraints that the technology suitable for high amplification places on the attenuator performance are examined. Secondly, a novel approach to the integrated implementation of gain slope equalization is presented, and the suitability of the proposed approach for integration within the RF front-end is verified. Thirdly, a sensitivity-aware implementation of a peak power detector is presented. The increased employment of digital gain control also increases the requirements on the sensitivity of the power detector employed for adaptive power and gain control. The design, implementation, and measurement results of a state-of-the-art wideband power detector with high sensitivity and large dynamic range are presented. The design is optimized to provide a large offset cancellation range, and the influence of offset cancellation circuits on the sensitivity of the power detector is studied. Moreover, design considerations for high sensitivity performance of the power detector are investigated, and the noise contributions from individual sub-circuits are evaluated. Finally, a wideband RF transceiver front-end is realized using a commercially available SiGe BiCMOS technology to demonstrate the enhancements in the digital controllability of the system. The RF front-end has a bandwidth of 500 MHz to 2.5 GHz, an input dynamic range of 20 dB, a digital gain control range larger than 30 dB, a digital gain slope equalization range from 1.49 dB/GHz to 3.78 dB/GHz, and employs a power detector with a sensitivity of -56 dBm and dynamic range of 64 dB. The digital control in the RF front-end is implemented using an on-chip serial-parallel-interface (SPI) that is controlled by an external micro-controller. A prototype implementation of the RF front-end system is presented as part of an RFIC intended for use in optical transceiver modules for fiber-to-the-x applications

    Machine learning for optical fiber communication systems: An introduction and overview

    Get PDF
    Optical networks generate a vast amount of diagnostic, control and performance monitoring data. When information is extracted from this data, reconfigurable network elements and reconfigurable transceivers allow the network to adapt both to changes in the physical infrastructure but also changing traffic conditions. Machine learning is emerging as a disruptive technology for extracting useful information from this raw data to enable enhanced planning, monitoring and dynamic control. We provide a survey of the recent literature and highlight numerous promising avenues for machine learning applied to optical networks, including explainable machine learning, digital twins and approaches in which we embed our knowledge into the machine learning such as physics-informed machine learning for the physical layer and graph-based machine learning for the networking layer

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Optical Transmission Systems based on the Nonlinear Fourier Transformation

    Get PDF
    Solitons are stable pulse shapes, which propagate linearly and maintain their shape despite the highly nonlinear fiber optical channel. A challenge in the use of these signal pulses in optical data transmission is to multiplex them with high efficiency. One way to multiplex many solitons is the nonlinear Fourier transform (NFT). With the help of the NFT, signal spectra can be calculated which propagate linearly through a nonlinear channel. Thus, in perspective, it is possible to perform linear transmissions even in highly nonlinear regions with high signal power levels. The NFT decomposes a signal into a dispersive and a solitonic part. The dispersive part is similar to spectra of the conventional linear Fourier transform and dominates especially at low signal powers. As soon as the total power of a signal exceeds a certain limit, solitons arise. A disadvantage of solitons generated digitally by the NFT is their complex shape due to, for example, high electrical bandwidths or a poor peak-to-average power ratio. In the course of this work, a scalable system architecture of a photonic integrated circuit based on a silicon chip was designed, which allows to multiplex several simple solitons tightly together to push the complex electrical generation of higher order solitons into the optical domain. This photonic integrated circuit was subsequently designed and fabricated by the Institute of Integrated Photonics at RWTH Aachen University. Using this novel system architecture and additional equalization concepts designed in this work, soliton transmissions with up to four channels could be successfully realized over more than 5000 km with a very high spectral efficiency of 0.5 b/s/Hz in the soliton range
    corecore