9 research outputs found

    Cost Effective Routing Implementations for On-chip Networks

    Full text link
    Arquitecturas de múltiples núcleos como multiprocesadores (CMP) y soluciones multiprocesador para sistemas dentro del chip (MPSoCs) actuales se basan en la eficacia de las redes dentro del chip (NoC) para la comunicación entre los diversos núcleos. Un diseño eficiente de red dentro del chip debe ser escalable y al mismo tiempo obtener valores ajustados de área, latencia y consumo de energía. Para diseños de red dentro del chip de propósito general se suele usar topologías de malla 2D ya que se ajustan a la distribución del chip. Sin embargo, la aparición de nuevos retos debe ser abordada por los diseñadores. Una mayor probabilidad de defectos de fabricación, la necesidad de un uso optimizado de los recursos para aumentar el paralelismo a nivel de aplicación o la necesidad de técnicas eficaces de ahorro de energía, puede ocasionar patrones de irregularidad en las topologías. Además, el soporte para comunicación colectiva es una característica buscada para abordar con eficacia las necesidades de comunicación de los protocolos de coherencia de caché. En estas condiciones, un encaminamiento eficiente de los mensajes se convierte en un reto a superar. El objetivo de esta tesis es establecer las bases de una nueva arquitectura para encaminamiento distribuido basado en lógica que es capaz de adaptarse a cualquier topología irregular derivada de una estructura de malla 2D, proporcionando así una cobertura total para cualquier caso resultado de soportar los retos mencionados anteriormente. Para conseguirlo, en primer lugar, se parte desde una base, para luego analizar una evolución de varios mecanismos, y finalmente llegar a una implementación, que abarca varios módulos para alcanzar el objetivo mencionado anteriormente. De hecho, esta última implementación tiene por nombre eLBDR (effective Logic-Based Distributed Routing). Este trabajo cubre desde el primer mecanismo, LBDR, hasta el resto de mecanismos que han surgido progresivamente.Rodrigo Mocholí, S. (2010). Cost Effective Routing Implementations for On-chip Networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8962Palanci

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    A novel, planar, microfluidic junction for multiphase flow, exemplified through the production of fusion energy targets, encapsulated mouse neuron stem cells and multi-compartmental capsules

    Get PDF
    Droplet microfluidics has been extensively studied in last two decades and found various applications in diverse research fields. In this thesis, we focused on the development of planar microfluidic devices, and explored their utility for the formation of multiple emulsions and microparticle fabrication. Here, a geometry variant flow-focusing junction was exhibited to control the location position of droplet breakup, and eliminate the satellite droplets. Then, this junction was tested to form monodispersed, multi-cored, double-emulsion droplets with controllable core numbers (up to 35) in a stepwise emulsification mechanism. Based on the above device, three diverse applications of droplet microfluidics have been conducted: (1) the mass fabrication of polymeric microcapsules with high sphericity and concentricity for inertial confinement fusion (ICF) target fabrication; (2) the production of microgels to encapsulate mouse neuron stem cells for stem cell therapy in the treatment of spinal cord injury; and (3) the formation of squalene droplets with motility and encapsulated droplet interface bilayers for the ultimate creation of artificial cells. Through the above, the following was achieved: (1) Single-core water/polymer/oil double emulsion droplets, as ICF target shells (for which sphericity and concentricity are paramount), were produced at tunable rates up to 20Hz. The polymeric microcapsules were solidified by using photopolymerization (minimum ultra violet exposure duration is 30ms) with an average 98.43±0.68% sphericity (best 99.69%), an average 98.44±0.62% concentricity (best 99.72%) and 100% yield rate; (2) Mouse neuron stem cells were encapsulated in alginate microspheres at 1 million cells/mL alginate. MTT assays were conducted to provide evidence that the cells survived the encapsulation process with continuous proliferation in vitro; and (3) xxviii Various arrangements of encapsulated droplet interface bilayer network were observed, and the motility of double emulsion droplets was realized by continuous interfacial reactions, through which the expulsion and capture actions of squalene droplets were identified

    A novel, planar, microfluidic junction for multiphase flow, exemplified through the production of fusion energy targets, encapsulated mouse neuron stem cells and multi-compartmental capsules

    Get PDF
    Droplet microfluidics has been extensively studied in last two decades and found various applications in diverse research fields. In this thesis, we focused on the development of planar microfluidic devices, and explored their utility for the formation of multiple emulsions and microparticle fabrication. Here, a geometry variant flow-focusing junction was exhibited to control the location position of droplet breakup, and eliminate the satellite droplets. Then, this junction was tested to form monodispersed, multi-cored, double-emulsion droplets with controllable core numbers (up to 35) in a stepwise emulsification mechanism. Based on the above device, three diverse applications of droplet microfluidics have been conducted: (1) the mass fabrication of polymeric microcapsules with high sphericity and concentricity for inertial confinement fusion (ICF) target fabrication; (2) the production of microgels to encapsulate mouse neuron stem cells for stem cell therapy in the treatment of spinal cord injury; and (3) the formation of squalene droplets with motility and encapsulated droplet interface bilayers for the ultimate creation of artificial cells. Through the above, the following was achieved: (1) Single-core water/polymer/oil double emulsion droplets, as ICF target shells (for which sphericity and concentricity are paramount), were produced at tunable rates up to 20Hz. The polymeric microcapsules were solidified by using photopolymerization (minimum ultra violet exposure duration is 30ms) with an average 98.43±0.68% sphericity (best 99.69%), an average 98.44±0.62% concentricity (best 99.72%) and 100% yield rate; (2) Mouse neuron stem cells were encapsulated in alginate microspheres at 1 million cells/mL alginate. MTT assays were conducted to provide evidence that the cells survived the encapsulation process with continuous proliferation in vitro; and (3) xxviii Various arrangements of encapsulated droplet interface bilayer network were observed, and the motility of double emulsion droplets was realized by continuous interfacial reactions, through which the expulsion and capture actions of squalene droplets were identified

    Programmable Routing Tables for Degradable Torus-Based Networks on Chips

    No full text

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore