15 research outputs found

    1D Printing of Recyclable Robots

    Get PDF

    A Game-theoretic Formulation of the Homogeneous Self-Reconfiguration Problem

    Get PDF
    In this paper we formulate the homogeneous two- and three-dimensional self-reconfiguration problem over discrete grids as a constrained potential game. We develop a game-theoretic learning algorithm based on the Metropolis-Hastings algorithm that solves the self-reconfiguration problem in a globally optimal fashion. Both a centralized and a fully distributed algorithm are presented and we show that the only stochastically stable state is the potential function maximizer, i.e. the desired target configuration. These algorithms compute transition probabilities in such a way that even though each agent acts in a self-interested way, the overall collective goal of self-reconfiguration is achieved. Simulation results confirm the feasibility of our approach and show convergence to desired target configurations.Comment: 8 pages, 5 figures, 2 algorithm

    Turning Machines

    Get PDF
    Molecular robotics is challenging, so it seems best to keep it simple. We consider an abstract molecular robotics model based on simple folding instructions that execute asynchronously. Turning Machines are a simple 1D to 2D folding model, also easily generalisable to 2D to 3D folding. A Turning Machine starts out as a line of connected monomers in the discrete plane, each with an associated turning number. A monomer turns relative to its neighbours, executing a unit-distance translation that drags other monomers along with it, and through collective motion the initial set of monomers eventually folds into a programmed shape. We fully characterise the ability of Turning Machines to execute line rotations, and to do so efficiently: computing an almost-full line rotation of 5?/3 radians is possible, yet a full 2? rotation is impossible. We show that such line-rotations represent a fundamental primitive in the model, by using them to efficiently and asynchronously fold arbitrarily large zig-zag-rastered squares and y-monotone shapes

    Design behaviors : programming the material world for responsive architecture

    Get PDF
    The advances of material science, coupled with computation and digital technologies, and applied to the architectural discipline have brought to life unprecedented possibilities for the design and making of responsive, collectively created and intelligent environments. Over the last two decades, research and applications of novel active materials, together with digital technologies such as Ubiquitous Computing, Human-Computer Interaction, and Artificial Intelligence, have introduced a model of Materially Responsive Architecture that presents unique possibilities for designing novel performances and behaviors of the architectural Beyond the use of mechanical systems, sensors, actuators or wires, often plugged into traditional materials to animate space, this dissertation proves that matter itself, can be the agent to achieve monitoring, reaction or adaptation with no need of any additional mechanics, electrical or motorized systems. Materials, therefore, become bits and information uniting with the digital world, while computational processes, such as algorithmic control, circular feedback, input or output, both drive and are driven by the morphogenetic capacities of matter, uniting, therefore, with the material world. Through the applications and implications of Materially Responsive Architecture we are crossing a threshold in design where physicality follows and reveals information through time and through dynamic configurations. Design is not limited to a finalised form but rather associated to a performance, where the final formal outcome consists in a series of animated and organic topologies rather than static geometries and structures. This new paradigm, is referred to, in this thesis, as the Design Behaviors paradigm (in the double sense of "behaviors of design" and "designing behaviors"), and is characterized by unique exchanges and dialogues between users and the environment, facilitated by the conjunction of human, material and computational intelligence. Buildings, objects and spaces are able to reconfigure themselves, in both atomic and macro scale, to support environmental changes and users' needs, behavioral and occupational patterns. At the same time the Design Behaviors paradigm places not only matter and the environment at the center of design and morphogenesis, but also the users, that become active participants of their built environment and play the final creative role. This paradigm shift, boosts new relations among the human's perception and body and the inhabited space. The new design paradigm is also a new cultural one, in which statics, repetition and Cartesian grids, traditionally related with safety, orientation and comfort, give way to motion, unpredictability and organic principles of evolution. Materially Responsive Architecture and the Design Behaviors paradigm define uniquely enhanced "environments" and "ecologies" where human, nature, artifice and technology collectively and evolutionally co-exist within a framework of increased consciousness and awareness. This thesis argues that, while there is no doubt that our future cities will consist in an extensive layer of distributed sensors, actuators and digital interfaces, they will also consist in an additional layer of novel materials, that are dynamic and soft, rather than rigid and hard, able to sense as sensors, actuate as motors, and be programmed as a software. The new materiality of our cities relies on the advances of material science, coupled with the cybernetic and computational power, and can be actuated by the environment to change states (Re-Active Matter), can be controlled by the users to respond (Co-Active Matter), and eventually can be designed and programmed to learn and evolve as living organisms do (Self-Active Matter). The physical space of the city is, thus, the seamless intertwining of digital and material content, becoming an active agent in the dynamic relationship between the environment and humans.Los avances en la ciencia de los materiales, junto con la computación y las tecnologías digitales, y aplicados a la disciplina arquitectónica, han dado vida a posibilidades sin precedentes para el diseño y la realización de entornos responsivos, inteligentes y creados de forma colectiva. En las últimas dos décadas, la investigación y aplicación de nuevos materiales activos junto con tecnologías digitales como la Computación Ubicua, la Interacción Hombre-Ordenador y la Inteligencia Artificial, han introducido el modelo de Materially Responsive Architecture (Arquitectura Materialmente Responsiva), que presenta posibilidades únicas para el diseño de nuevas actuaciones y comportamientos del espacio arquitectónico. Más allá del uso de sistemas mecánicos, sensores, o motores, a menudo conectados a materiales tradicionales para activar el espacio, esta disertación demuestra que la materia en sí misma puede ser el agente que consiga monitoreo o reactividad sin necesidad de añadir ningún sistema mecánico o eléctrico. Los materiales, en este caso, se convierten en bits e información fundiéndose con el mundo digital, mientras que los procesos computacionales, como el feedback circular y el input o output, a la vez impulsan y son impulsados por la capacidad morfogenética de la materia, uniéndose, por lo tanto, con el mundo material. A través de las aplicaciones y las implicaciones de la Materially Responsive Architecture, estamos cruzando un umbral en el diseño donde el mundo físico sigue y revela información a través de configuraciones dinámicas en el tiempo. El diseño no se limita a una forma finalizada, sino se relaciona a una performance, donde el resultado formal final consiste en una serie de topologías orgánicas y animadas en lugar de estructuras y geometrías estáticas. En esta tesis doctoral, este nuevo paradigma se denomina paradigma de Design Behaviours (en el doble sentido de "comportamientos de diseño" y de "diseño de comportamientos") y se caracteriza por intercambios únicos entre el usuario y el entorno, facilitados por la conjunción de inteligencia humana, material y computacional. Los edificios, objetos y espacios pueden reconfigurarse a sí mismos, tanto a nivél atómico como a macro escala, para responder a los cambios ambientales y a las necesidades de los usuarios. Al mismo tiempo, el paradigma Design Behaviors coloca en el centro del diseño y la morfogénesis no solo la materia y el medio ambiente, sino también a los usuarios, que se convierten en participantes de su entorno construido y desempeñan el papel creativo final. El nuevo paradigma define "entornos" y "ecologías" aumentados de manera singular, donde el ser humano, la naturaleza, el artificio y la tecnología coexisten de manera colectiva y evolutiva dentro de un marco de mayor conciencia consciente. El nuevo paradigma de diseño es también un nuevo paradigma cultural, en el que las redes estáticas, repetitivas y cartesianas, tradicionalmente relacionadas con la seguridad, la orientación y el confort, dan paso al movimiento, la imprevisibilidad y la evolución orgánica. Esta tesis sostiene que, si bien no hay duda de que nuestras ciudades futuras consistirán en una capa extensa de sensores distribuidos e interfaces digitales, también contarán con una capa adicional de materiales dinámicos y suaves, en lugar de rígidos y duros, capaces de sentir como sensores, actuar como motores y ser programados como un software. La nueva materialidad de nuestras ciudades puede ser activada por el medio ambiente para cambiar su estado (Re-Active Matter), puede ser controlada por los usuarios para responderles (Co-Active Matter), y eventualmente puede diseñarse y programarse para aprender y evolucionar por sí misma así como lo hacen los organismos vivos (Self-Active Matter). El espacio físico de la ciudad es, por lo tanto, el entrelazado holístico entre contenido digital y material, convirtiéndose en un agente activo en la relación dinámica entre el medio ambiente y los humanos
    corecore