2,156 research outputs found

    Using reconfigurable computing technology to accelerate matrix decomposition and applications

    Get PDF
    Matrix decomposition plays an increasingly significant role in many scientific and engineering applications. Among numerous techniques, Singular Value Decomposition (SVD) and Eigenvalue Decomposition (EVD) are widely used as factorization tools to perform Principal Component Analysis for dimensionality reduction and pattern recognition in image processing, text mining and wireless communications, while QR Decomposition (QRD) and sparse LU Decomposition (LUD) are employed to solve the dense or sparse linear system of equations in bioinformatics, power system and computer vision. Matrix decompositions are computationally expensive and their sequential implementations often fail to meet the requirements of many time-sensitive applications. The emergence of reconfigurable computing has provided a flexible and low-cost opportunity to pursue high-performance parallel designs, and the use of FPGAs has shown promise in accelerating this class of computation. In this research, we have proposed and implemented several highly parallel FPGA-based architectures to accelerate matrix decompositions and their applications in data mining and signal processing. Specifically, in this dissertation we describe the following contributions: • We propose an efficient FPGA-based double-precision floating-point architecture for EVD, which can efficiently analyze large-scale matrices. • We implement a floating-point Hestenes-Jacobi architecture for SVD, which is capable of analyzing arbitrary sized matrices. • We introduce a novel deeply pipelined reconfigurable architecture for QRD, which can be dynamically configured to perform either Householder transformation or Givens rotation in a manner that takes advantage of the strengths of each. • We design a configurable architecture for sparse LUD that supports both symmetric and asymmetric sparse matrices with arbitrary sparsity patterns. • By further extending the proposed hardware solution for SVD, we parallelize a popular text mining tool-Latent Semantic Indexing with an FPGA-based architecture. • We present a configurable architecture to accelerate Homotopy l1-minimization, in which the modification of the proposed FPGA architecture for sparse LUD is used at its core to parallelize both Cholesky decomposition and rank-1 update. Our experimental results using an FPGA-based acceleration system indicate the efficiency of our proposed novel architectures, with application and dimension-dependent speedups over an optimized software implementation that range from 1.5ÃÂ to 43.6ÃÂ in terms of computation time

    An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration

    Get PDF
    We empirically evaluate an undervolting technique, i.e., underscaling the circuit supply voltage below the nominal level, to improve the power-efficiency of Convolutional Neural Network (CNN) accelerators mapped to Field Programmable Gate Arrays (FPGAs). Undervolting below a safe voltage level can lead to timing faults due to excessive circuit latency increase. We evaluate the reliability-power trade-off for such accelerators. Specifically, we experimentally study the reduced-voltage operation of multiple components of real FPGAs, characterize the corresponding reliability behavior of CNN accelerators, propose techniques to minimize the drawbacks of reduced-voltage operation, and combine undervolting with architectural CNN optimization techniques, i.e., quantization and pruning. We investigate the effect of environmental temperature on the reliability-power trade-off of such accelerators. We perform experiments on three identical samples of modern Xilinx ZCU102 FPGA platforms with five state-of-the-art image classification CNN benchmarks. This approach allows us to study the effects of our undervolting technique for both software and hardware variability. We achieve more than 3X power-efficiency (GOPs/W) gain via undervolting. 2.6X of this gain is the result of eliminating the voltage guardband region, i.e., the safe voltage region below the nominal level that is set by FPGA vendor to ensure correct functionality in worst-case environmental and circuit conditions. 43% of the power-efficiency gain is due to further undervolting below the guardband, which comes at the cost of accuracy loss in the CNN accelerator. We evaluate an effective frequency underscaling technique that prevents this accuracy loss, and find that it reduces the power-efficiency gain from 43% to 25%.Comment: To appear at the DSN 2020 conferenc

    MaxEVA: Maximizing the Efficiency of Matrix Multiplication on Versal AI Engine

    Full text link
    The increasing computational and memory requirements of Deep Learning (DL) workloads has led to outstanding innovations in hardware architectures. An archetype of such architectures is the novel Versal AI Engine (AIE) by AMD/Xilinx. The AIE comprises multiple programmable processors optimized for vector-based algorithms. An AIE array consisting of 400 processor cores, operating at 1.25 GHz is able to deliver a peak throughput of 8 TFLOPs for 32-bit floating-point (fp32), and 128 TOPs for 8-bit integer (int8) precision. In this work, we propose MaxEVA: a novel framework to efficiently map Matrix Multiplication (MatMul) workloads on Versal AIE devices. Our framework maximizes the performance and energy efficiency of MatMul applications by efficiently exploiting features of the AIE architecture and resolving performance bottlenecks from multiple angles. When demonstrating on the VC1902 device of the VCK190 board, MaxEVA accomplishes up to 5.44 TFLOPs and 77.01 TOPs throughput for fp32 and int8 precisions, respectively. In terms of energy efficiency, MaxEVA attains up to 124.16 GFLOPs/W for fp32, and 1.16 TOPs/W for int8. Our proposed method substantially outperforms the state-of-the-art approach by exhibiting up to 2.19x throughput gain and 20.4% higher energy efficiency. The MaxEVA framework provides notable insights to fill the knowledge gap in effectively designing MatMul-based DL workloads on the new Versal AIE devices.Comment: Accepted as full paper at FPT 202

    ACCELERATION OF SPARSE MATRIX MULTIPLICATION USING BIT-SERIAL ARITHMETIC

    Get PDF
    Machine Learning inference requires the multiplication of large, sparse matrices. We argue that direct spatial implementation of these fixed matrices minimizes the work per- formed in the computation, and allows for significant reduction in latency and power through constant propagation and logic minimization. Bit-serial arithmetic enables massive static matrices to be implemented. We present the structure of our bit-serial matrix multiplier, and evaluate using canonical signed digit representation to further reduce logic utilization. We have implemented these matrices on a large FPGA and provide a cost model that is simple and extensible. These FPGA implementations, on average, reduce latency by 50x up to 86x versus GPU libraries. Comparing against a recent sparse DNN accelerator, we measure a 4.1x to 47x reduction in latency depending on matrix dimension and sparsity. Throughput of the FPGA solution is also competitive for a wide range of matrix dimensions and batch sizes. Finally, we discuss ways these techniques could be deployed in ASICs, making them applicable for dynamic sparse matrix computations.M.S

    Semi-dense SLAM on an FPGA SoC

    No full text
    Deploying advanced Simultaneous Localisation and Mapping, or SLAM, algorithms in autonomous low-power robotics will enable emerging new applications which require an accurate and information rich reconstruction of the environment. This has not been achieved so far because accuracy and dense 3D reconstruction come with a high computational complexity. This paper discusses custom hardware design on a novel platform for embedded SLAM, an FPGA-SoC, combining an embedded CPU and programmable logic on the same chip. The use of programmable logic, tightly integrated with an efficient multicore embedded CPU stands to provide an effective solution to this problem. In this work an average framerate of more than 4 frames/second for a resolution of 320×240 has been achieved with an estimated power of less than 1 Watt for the custom hardware. In comparison to the software-only version, running on a dual-core ARM processor, an acceleration of 2× has been achieved for LSD-SLAM, without any compromise in the quality of the result

    Understanding the design-space of sparse/dense multiphase GNN dataflows on spatial accelerators

    Get PDF
    Graph Neural Networks (GNNs) have garnered a lot of recent interest because of their success in learning representations from graph-structured data across several critical applications in cloud and HPC. Owing to their unique compute and memory characteristics that come from an interplay between dense and sparse phases of computations, the emergence of recon-figurable dataflow (aka spatial) accelerators offers promise for acceleration by mapping optimized dataflows (i.e., computation order and parallelism) for both phases. The goal of this work is to characterize and understand the design-space of dataflow choices for running GNNs on spatial accelerators in order for mappers or design-space exploration tools to optimize the dataflow based on the workload. Specifically, we propose a taxonomy to describe all possible choices for mapping the dense and sparse phases of GNN inference, spatially and temporally over a spatial accelerator, capturing both the intra-phase dataflow and the inter-phase (pipelined) dataflow. Using this taxonomy, we do deep-dives into the cost and benefits of several dataflows and perform case studies on implications of hardware parameters for dataflows and value of flexibility to support pipelined execution.Parts of this work were supported through a fellowship by NEC Laboratories Europe, Project grant PID2020-112827GB-I00 funded by MCIN/AEI/ 10.13039/501100011033, RTI2018-098156-B-C53 (MCIU/AEI/FEDER,UE) and grant 20749/FPI/18 from Fundación Séneca.Peer ReviewedPostprint (author's final draft

    Efficient Hardware Architectures for Accelerating Deep Neural Networks: Survey

    Get PDF
    In the modern-day era of technology, a paradigm shift has been witnessed in the areas involving applications of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL). Specifically, Deep Neural Networks (DNNs) have emerged as a popular field of interest in most AI applications such as computer vision, image and video processing, robotics, etc. In the context of developed digital technologies and the availability of authentic data and data handling infrastructure, DNNs have been a credible choice for solving more complex real-life problems. The performance and accuracy of a DNN is a way better than human intelligence in certain situations. However, it is noteworthy that the DNN is computationally too cumbersome in terms of the resources and time to handle these computations. Furthermore, general-purpose architectures like CPUs have issues in handling such computationally intensive algorithms. Therefore, a lot of interest and efforts have been invested by the research fraternity in specialized hardware architectures such as Graphics Processing Unit (GPU), Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), and Coarse Grained Reconfigurable Array (CGRA) in the context of effective implementation of computationally intensive algorithms. This paper brings forward the various research works carried out on the development and deployment of DNNs using the aforementioned specialized hardware architectures and embedded AI accelerators. The review discusses the detailed description of the specialized hardware-based accelerators used in the training and/or inference of DNN. A comparative study based on factors like power, area, and throughput, is also made on the various accelerators discussed. Finally, future research and development directions are discussed, such as future trends in DNN implementation on specialized hardware accelerators. This review article is intended to serve as a guide for hardware architectures for accelerating and improving the effectiveness of deep learning research.publishedVersio
    • …
    corecore