3,127 research outputs found

    Depth, Highness and DNR degrees

    Get PDF
    We study Bennett deep sequences in the context of recursion theory; in particular we investigate the notions of O(1)-deepK, O(1)-deepC , order-deep K and order-deep C sequences. Our main results are that Martin-Loef random sets are not order-deepC , that every many-one degree contains a set which is not O(1)-deepC , that O(1)-deepC sets and order-deepK sets have high or DNR Turing degree and that no K-trival set is O(1)-deepK.Comment: journal version, dmtc

    The "paradox" of computability and a recursive relative version of the Busy Beaver function

    Full text link
    In this article, we will show that uncomputability is a relative property not only of oracle Turing machines, but also of subrecursive classes. We will define the concept of a Turing submachine, and a recursive relative version for the Busy Beaver function which we will call Busy Beaver Plus function. Therefore, we will prove that the computable Busy Beaver Plus function defined on any Turing submachine is not computable by any program running on this submachine. We will thereby demonstrate the existence of a "paradox" of computability a la Skolem: a function is computable when "seen from the outside" the subsystem, but uncomputable when "seen from within" the same subsystem. Finally, we will raise the possibility of defining universal submachines, and a hierarchy of negative Turing degrees.Comment: 10 pages. 0 figures. Supported by the National Council for Scientific and Technological Development (CNPq), Brazil. Book chapter published in Information and Complexity, Mark Burgin and Cristian S. Calude (Editors), World Scientific Publishing, 2016, ISBN 978-981-3109-02-5, available at http://www.worldscientific.com/worldscibooks/10.1142/10017. arXiv admin note: substantial text overlap with arXiv:1612.0522

    Empirical Encounters with Computational Irreducibility and Unpredictability

    Full text link
    There are several forms of irreducibility in computing systems, ranging from undecidability to intractability to nonlinearity. This paper is an exploration of the conceptual issues that have arisen in the course of investigating speed-up and slowdown phenomena in small Turing machines. We present the results of a test that may spur experimental approaches to the notion of computational irreducibility. The test involves a systematic attempt to outrun the computation of a large number of small Turing machines (all 3 and 4 state, 2 symbol) by means of integer sequence prediction using a specialized function finder program. This massive experiment prompts an investigation into rates of convergence of decision procedures and the decidability of sets in addition to a discussion of the (un)predictability of deterministic computing systems in practice. We think this investigation constitutes a novel approach to the discussion of an epistemological question in the context of a computer simulation, and thus represents an interesting exploration at the boundary between philosophical concerns and computational experiments.Comment: 18 pages, 4 figure

    Kolmogorov's Structure Functions and Model Selection

    Full text link
    In 1974 Kolmogorov proposed a non-probabilistic approach to statistics and model selection. Let data be finite binary strings and models be finite sets of binary strings. Consider model classes consisting of models of given maximal (Kolmogorov) complexity. The ``structure function'' of the given data expresses the relation between the complexity level constraint on a model class and the least log-cardinality of a model in the class containing the data. We show that the structure function determines all stochastic properties of the data: for every constrained model class it determines the individual best-fitting model in the class irrespective of whether the ``true'' model is in the model class considered or not. In this setting, this happens {\em with certainty}, rather than with high probability as is in the classical case. We precisely quantify the goodness-of-fit of an individual model with respect to individual data. We show that--within the obvious constraints--every graph is realized by the structure function of some data. We determine the (un)computability properties of the various functions contemplated and of the ``algorithmic minimal sufficient statistic.''Comment: 25 pages LaTeX, 5 figures. In part in Proc 47th IEEE FOCS; this final version (more explanations, cosmetic modifications) to appear in IEEE Trans Inform T
    • …
    corecore