184 research outputs found

    Kolmogorov complexity and computably enumerable sets

    Full text link
    We study the computably enumerable sets in terms of the: (a) Kolmogorov complexity of their initial segments; (b) Kolmogorov complexity of finite programs when they are used as oracles. We present an extended discussion of the existing research on this topic, along with recent developments and open problems. Besides this survey, our main original result is the following characterization of the computably enumerable sets with trivial initial segment prefix-free complexity. A computably enumerable set AA is KK-trivial if and only if the family of sets with complexity bounded by the complexity of AA is uniformly computable from the halting problem

    Algorithmic Randomness and Complexity

    Full text link

    Intuitionistic computability logic

    Get PDF
    Computability logic (CL) is a systematic formal theory of computational tasks and resources, which, in a sense, can be seen as a semantics-based alternative to (the syntactically introduced) linear logic. With its expressive and flexible language, where formulas represent computational problems and "truth" is understood as algorithmic solvability, CL potentially offers a comprehensive logical basis for constructive applied theories and computing systems inherently requiring constructive and computationally meaningful underlying logics. Among the best known constructivistic logics is Heyting's intuitionistic calculus INT, whose language can be seen as a special fragment of that of CL. The constructivistic philosophy of INT, however, has never really found an intuitively convincing and mathematically strict semantical justification. CL has good claims to provide such a justification and hence a materialization of Kolmogorov's known thesis "INT = logic of problems". The present paper contains a soundness proof for INT with respect to the CL semantics. A comprehensive online source on CL is available at http://www.cis.upenn.edu/~giorgi/cl.htm

    Computability Theory (hybrid meeting)

    Get PDF
    Over the last decade computability theory has seen many new and fascinating developments that have linked the subject much closer to other mathematical disciplines inside and outside of logic. This includes, for instance, work on enumeration degrees that has revealed deep and surprising relations to general topology, the work on algorithmic randomness that is closely tied to symbolic dynamics and geometric measure theory. Inside logic there are connections to model theory, set theory, effective descriptive set theory, computable analysis and reverse mathematics. In some of these cases the bridges to seemingly distant mathematical fields have yielded completely new proofs or even solutions of open problems in the respective fields. Thus, over the last decade, computability theory has formed vibrant and beneficial interactions with other mathematical fields. The goal of this workshop was to bring together researchers representing different aspects of computability theory to discuss recent advances, and to stimulate future work

    On New Notions of Algorithmic Dimension, Immunity, and Medvedev Degree

    Get PDF
    Ph.D

    Degrees of monotone complexity

    Full text link

    Generalized Domination.

    Full text link
    This thesis develops the theory of the everywhere domination relation between functions from one infinite cardinal to another. When the domain of the functions is the cardinal of the continuum and the range is the set of natural numbers, we may restrict our attention to nicely definable functions from R to N. When we consider a class of such functions which contains all Baire class one functions, it becomes possible to encode information into these functions which can be decoded from any dominator. Specifically, we show that there is a generalized Galois-Tukey connection from the appropriate domination relation to a classical ordering studied in recursion theory. The proof techniques are developed to prove new implications regarding the distributivity of complete Boolean algebras. Next, we investigate a more technical relation relevant to the study of Borel equivalence relations on R with countable equivalence classes. We show than an analogous generalized Galois-Tukey connection exists between this relation and another ordering studied in recursion theory.PhDMathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113539/1/danhath_1.pd

    Reverse mathematics and equivalents of the axiom of choice

    Full text link
    We study the reverse mathematics of countable analogues of several maximality principles that are equivalent to the axiom of choice in set theory. Among these are the principle asserting that every family of sets has a \subseteq-maximal subfamily with the finite intersection property and the principle asserting that if PP is a property of finite character then every set has a \subseteq-maximal subset of which PP holds. We show that these principles and their variations have a wide range of strengths in the context of second-order arithmetic, from being equivalent to Z2\mathsf{Z}_2 to being weaker than ACA0\mathsf{ACA}_0 and incomparable with WKL0\mathsf{WKL}_0. In particular, we identify a choice principle that, modulo Σ20\Sigma^0_2 induction, lies strictly below the atomic model theorem principle AMT\mathsf{AMT} and implies the omitting partial types principle OPT\mathsf{OPT}

    Degrees of Computability and Randomness

    Get PDF
    corecore