3,755 research outputs found

    A methodology for producing reliable software, volume 1

    Get PDF
    An investigation into the areas having an impact on producing reliable software including automated verification tools, software modeling, testing techniques, structured programming, and management techniques is presented. This final report contains the results of this investigation, analysis of each technique, and the definition of a methodology for producing reliable software

    SAGA: A DSL for Story Management

    Full text link
    Video game development is currently a very labour-intensive endeavour. Furthermore it involves multi-disciplinary teams of artistic content creators and programmers, whose typical working patterns are not easily meshed. SAGA is our first effort at augmenting the productivity of such teams. Already convinced of the benefits of DSLs, we set out to analyze the domains present in games in order to find out which would be most amenable to the DSL approach. Based on previous work, we thus sought those sub-parts that already had a partially established vocabulary and at the same time could be well modeled using classical computer science structures. We settled on the 'story' aspect of video games as the best candidate domain, which can be modeled using state transition systems. As we are working with a specific company as the ultimate customer for this work, an additional requirement was that our DSL should produce code that can be used within a pre-existing framework. We developed a full system (SAGA) comprised of a parser for a human-friendly language for 'story events', an internal representation of design patterns for implementing object-oriented state-transitions systems, an instantiator for these patterns for a specific 'story', and three renderers (for C++, C# and Java) for the instantiated abstract code.Comment: In Proceedings DSL 2011, arXiv:1109.032

    A general framework for positioning, evaluating and selecting the new generation of development tools.

    Get PDF
    This paper focuses on the evaluation and positioning of a new generation of development tools containing subtools (report generators, browsers, debuggers, GUI-builders, ...) and programming languages that are designed to work together and have a common graphical user interface and are therefore called environments. Several trends in IT have led to a pluriform range of developments tools that can be classified in numerous categories. Examples are: object-oriented tools, GUI-tools, upper- and lower CASE-tools, client/server tools and 4GL environments. This classification does not sufficiently cover the tools subject in this paper for the simple reason that only one criterion is used to distinguish them. Modern visual development environments often fit in several categories because to a certain extent, several criteria can be applied to evaluate them. In this study, we will offer a broad classification scheme with which tools can be positioned and which can be refined through further research.

    Mixing multi-core CPUs and GPUs for scientific simulation software

    Get PDF
    Recent technological and economic developments have led to widespread availability of multi-core CPUs and specialist accelerator processors such as graphical processing units (GPUs). The accelerated computational performance possible from these devices can be very high for some applications paradigms. Software languages and systems such as NVIDIA's CUDA and Khronos consortium's open compute language (OpenCL) support a number of individual parallel application programming paradigms. To scale up the performance of some complex systems simulations, a hybrid of multi-core CPUs for coarse-grained parallelism and very many core GPUs for data parallelism is necessary. We describe our use of hybrid applica- tions using threading approaches and multi-core CPUs to control independent GPU devices. We present speed-up data and discuss multi-threading software issues for the applications level programmer and o er some suggested areas for language development and integration between coarse-grained and ne-grained multi-thread systems. We discuss results from three common simulation algorithmic areas including: partial di erential equations; graph cluster metric calculations and random number generation. We report on programming experiences and selected performance for these algorithms on: single and multiple GPUs; multi-core CPUs; a CellBE; and using OpenCL. We discuss programmer usability issues and the outlook and trends in multi-core programming for scienti c applications developers

    Linguistic Reflection in Java

    Get PDF
    Reflective systems allow their own structures to be altered from within. Here we are concerned with a style of reflection, called linguistic reflection, which is the ability of a running program to generate new program fragments and to integrate these into its own execution. In particular we describe how this kind of reflection may be provided in the compiler-based, strongly typed object-oriented programming language Java. The advantages of the programming technique include attaining high levels of genericity and accommodating system evolution. These advantages are illustrated by an example taken from persistent programming which shows how linguistic reflection allows functionality (program code) to be generated on demand (Just-In-Time) from a generic specification and integrated into the evolving running program. The technique is evaluated against alternative implementation approaches with respect to efficiency, safety and ease of use.Comment: 25 pages. Source code for examples at http://www-ppg.dcs.st-and.ac.uk/Java/ReflectionExample/ Dynamic compilation package at http://www-ppg.dcs.st-and.ac.uk/Java/DynamicCompilation

    Contract-Based General-Purpose GPU Programming

    Get PDF
    Using GPUs as general-purpose processors has revolutionized parallel computing by offering, for a large and growing set of algorithms, massive data-parallelization on desktop machines. An obstacle to widespread adoption, however, is the difficulty of programming them and the low-level control of the hardware required to achieve good performance. This paper suggests a programming library, SafeGPU, that aims at striking a balance between programmer productivity and performance, by making GPU data-parallel operations accessible from within a classical object-oriented programming language. The solution is integrated with the design-by-contract approach, which increases confidence in functional program correctness by embedding executable program specifications into the program text. We show that our library leads to modular and maintainable code that is accessible to GPGPU non-experts, while providing performance that is comparable with hand-written CUDA code. Furthermore, runtime contract checking turns out to be feasible, as the contracts can be executed on the GPU

    PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation

    Full text link
    High-performance computing has recently seen a surge of interest in heterogeneous systems, with an emphasis on modern Graphics Processing Units (GPUs). These devices offer tremendous potential for performance and efficiency in important large-scale applications of computational science. However, exploiting this potential can be challenging, as one must adapt to the specialized and rapidly evolving computing environment currently exhibited by GPUs. One way of addressing this challenge is to embrace better techniques and develop tools tailored to their needs. This article presents one simple technique, GPU run-time code generation (RTCG), along with PyCUDA and PyOpenCL, two open-source toolkits that support this technique. In introducing PyCUDA and PyOpenCL, this article proposes the combination of a dynamic, high-level scripting language with the massive performance of a GPU as a compelling two-tiered computing platform, potentially offering significant performance and productivity advantages over conventional single-tier, static systems. The concept of RTCG is simple and easily implemented using existing, robust infrastructure. Nonetheless it is powerful enough to support (and encourage) the creation of custom application-specific tools by its users. The premise of the paper is illustrated by a wide range of examples where the technique has been applied with considerable success.Comment: Submitted to Parallel Computing, Elsevie

    Reliability measurement during software development

    Get PDF
    During the development of data base software for a multi-sensor tracking system, reliability was measured. The failure ratio and failure rate were found to be consistent measures. Trend lines were established from these measurements that provided good visualization of the progress on the job as a whole as well as on individual modules. Over one-half of the observed failures were due to factors associated with the individual run submission rather than with the code proper. Possible application of these findings for line management, project managers, functional management, and regulatory agencies is discussed. Steps for simplifying the measurement process and for use of these data in predicting operational software reliability are outlined

    Building-Blocks for Performance Oriented DSLs

    Full text link
    Domain-specific languages raise the level of abstraction in software development. While it is evident that programmers can more easily reason about very high-level programs, the same holds for compilers only if the compiler has an accurate model of the application domain and the underlying target platform. Since mapping high-level, general-purpose languages to modern, heterogeneous hardware is becoming increasingly difficult, DSLs are an attractive way to capitalize on improved hardware performance, precisely by making the compiler reason on a higher level. Implementing efficient DSL compilers is a daunting task however, and support for building performance-oriented DSLs is urgently needed. To this end, we present the Delite Framework, an extensible toolkit that drastically simplifies building embedded DSLs and compiling DSL programs for execution on heterogeneous hardware. We discuss several building blocks in some detail and present experimental results for the OptiML machine-learning DSL implemented on top of Delite.Comment: In Proceedings DSL 2011, arXiv:1109.032

    Program sketching

    Get PDF
    Sketching is a synthesis methodology that aims to bridge the gap between a programmer’s high-level insights about a problem and the computer’s ability to manage low-level details. In sketching, the programmer uses a partial program, a sketch, to describe the desired implementation strategy, and leaves the low-level details of the implementation to an automated synthesis procedure. In order to generate an implementation from the programmer provided sketch, the synthesizer uses counterexample-guided inductive synthesis (CEGIS). Inductive synthesis refers to the process of generating candidate implementations from concrete examples of correct or incorrect behavior. CEGIS combines a SAT-based inductive synthesizer with an automated validation procedure, a bounded model-checker, that checks whether the candidate implementation produced by inductive synthesis is indeed correct and to produce new counterexamples. The result is a synthesis procedure that is able to handle complex problems from a variety of domains including ciphers, scientific programs, and even concurrent data-structures
    • …
    corecore