2,158 research outputs found

    A toolset for the analysis and optimization of motion estimation algorithms and processors

    Get PDF

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201

    Real-Time Lossless Compression of SoC Trace Data

    Get PDF
    Nowadays, with the increasing complexity of System-on-Chip (SoC), traditional debugging approaches are not enough in multi-core architecture systems. Hardware tracing becomes necessary for performance analysis in these systems. The problem is that the size of collected trace data through hardware-based tracing techniques is usually extremely large due to the increasing complexity of System-on-Chips. Hence on-chip trace compression performed in hardware is needed to reduce the amount of transferred or stored data. In this dissertation, the feasibility of different types of lossless data compression algorithms in hardware implementation are investigated and examined. A lossless data compression algorithm LZ77 is selected, analyzed, and optimized to Nexus traces data. In order to meet the hardware cost and compression performances requirements for the real-time compression, an optimized LZ77 compression algorithm is proposed based on the characteristics of Nexus trace data. This thesis presents a hardware implementation of LZ77 encoder described in Very High Speed Integrated Circuit Hardware Description Language (VHDL). Test results demonstrate that the compression speed can achieve16 bits/clock cycle and the average compression ratio is 1.35 for the minimal hardware cost case, which is a suitable trade-off between the hardware cost and the compression performances effectively

    VLSI architecture design approaches for real-time video processing

    Get PDF
    This paper discusses the programmable and dedicated approaches for real-time video processing applications. Various VLSI architecture including the design examples of both approaches are reviewed. Finally, discussions of several practical designs in real-time video processing applications are then considered in VLSI architectures to provide significant guidelines to VLSI designers for any further real-time video processing design works

    Computer vision algorithms on reconfigurable logic arrays

    Full text link
    corecore