36,163 research outputs found

    ARMD Workshop on Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation

    Get PDF
    This report documents the goals, organization and outcomes of the NASA Aeronautics Research Mission Directorates (ARMD) Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation Workshop. The workshop began with a series of plenary presentations by leaders in the field of structures and materials, followed by concurrent symposia focused on forecasting the future of various technologies related to rapid manufacturing of metallic materials and polymeric matrix composites, referred to herein as composites. Shortly after the workshop, questionnaires were sent to key workshop participants from the aerospace industry with requests to rank the importance of a series of potential investment areas identified during the workshop. Outcomes from the workshop and subsequent questionnaires are being used as guidance for NASA investments in this important technology area

    The aerospace plane design challenge: Credible computational fluid dynamics results

    Get PDF
    Computational fluid dynamics (CFD) is necessary in the design processes of all current aerospace plane programs. Single-stage-to-orbit (STTO) aerospace planes with air-breathing supersonic combustion are going to be largely designed by means of CFD. The challenge of the aerospace plane design is to provide credible CFD results to work from, to assess the risk associated with the use of those results, and to certify CFD codes that produce credible results. To establish the credibility of CFD results used in design, the following topics are discussed: CFD validation vis-a-vis measurable fluid dynamics (MFD) validation; responsibility for credibility; credibility requirement; and a guide for establishing credibility. Quantification of CFD uncertainties helps to assess success risk and safety risks, and the development of CFD as a design tool requires code certification. This challenge is managed by designing the designers to use CFD effectively, by ensuring quality control, and by balancing the design process. For designing the designers, the following topics are discussed: how CFD design technology is developed; the reasons Japanese companies, by and large, produce goods of higher quality than the U.S. counterparts; teamwork as a new way of doing business; and how ideas, quality, and teaming can be brought together. Quality control for reducing the loss imparted to the society begins with the quality of the CFD results used in the design process, and balancing the design process means using a judicious balance of CFD and MFD

    High-speed civil transport flight- and propulsion-control technological issues

    Get PDF
    Technology advances required in the flight and propulsion control system disciplines to develop a high speed civil transport (HSCT) are identified. The mission and requirements of the transport and major flight and propulsion control technology issues are discussed. Each issue is ranked and, for each issue, a plan for technology readiness is given. Certain features are unique and dominate control system design. These features include the high temperature environment, large flexible aircraft, control-configured empennage, minimizing control margins, and high availability and excellent maintainability. The failure to resolve most high-priority issues can prevent the transport from achieving its goals. The flow-time for hardware may require stimulus, since market forces may be insufficient to ensure timely production. Flight and propulsion control technology will contribute to takeoff gross weight reduction. Similar technology advances are necessary also to ensure flight safety for the transport. The certification basis of the HSCT must be negotiated between airplane manufacturers and government regulators. Efficient, quality design of the transport will require an integrated set of design tools that support the entire engineering design team

    Certification of programs with computational effects

    Full text link
    In purely functional programming languages imperative features, more generally computational effects are prohibited. However, non-functional lan- guages do involve effects. The theory of decorated logic provides a rigorous for- malism (with a refinement in operation signatures) for proving program properties with respect to computational effects. The aim of this thesis is to first develop Coq libraries and tools for verifying program properties in decorated settings as- sociated with several effects: states, local state, exceptions, non-termination, etc. Then, these tools will be combined to deal with several effects

    Entry Systems Panel deliberations

    Get PDF
    The Entry Systems Panel was chaired by Don Rummler, LaRC and Dan Rasky, ARC. As requested, each panel participant prior to the workshop prepared and delivered presentations to: (1) identify technology needs; (2) assess current programs; (3) identify technology gaps; and (4) identify highest payoff areas R&D. Participants presented background on the entry systems R&D efforts and operations experiences for the Space Shuttle Orbiter. These participants represented NASA Centers involved in research (Ames Research Center), development (Johnson Space Center) and operations (Kennedy Space Center) and the Shuttle Orbiter prime contractor. The presentations lead to the discovery of several lessons learned

    Far Term Noise Reduction Technology Roadmap for a Large Twin-Aisle Tube-And-Wing Subsonic Transport

    Get PDF
    Interest in unconventional aircraft architectures has steadily increased over the past several decades. However, each of these concepts has several technical challenges to overcome before maturing to the point of commercial acceptance. In the interim, it is important to identify any technologies that will enhance the noise reduction of conventional tube-and-wing aircraft. A technology roadmap with an assumed acoustic technology level of a 2035 entry into service is established for a large twin-aisle, tube-and-wing architecture to identify which technologies provide the most noise reduction. The noise reduction potential of the architecture relative to NASA noise goals is also assessed. The current roadmap estimates only a 30 EPNdB cumulative margin to Stage 4 for this configuration of a tube-and-wing aircraft with engines under the wing. This falls short of reaching even the 2025 Mid Term NASA goal (32 EPNdB) in the Far Term time frame. Specifically, the lack of additional technologies to reduce the aft fan noise and the corresponding installation effects is the key limitation of the noise reduction potential of the aircraft. Under the same acoustic technology assumptions, unconventional architectures are shown to offer an 810 EPNdB benefit from favorable relative placement of the engine when integrated to the airframe

    Technical evaluation report, AGARD Fluid Dynamics Panel Symposium on Effects of Adverse Weather on Aerodynamics

    Get PDF
    The purpose of the meeting on Effects of Adverse Weather on Aerodynamics was to provide an update of the stae-of-the-art with respect to the prediction, simulation, and measurement of the effects of icing, anti-icing fluids, and various precipitation on the aerodynamic characteristics of flight vehicles. Sessions were devoted to introductory and survey papers and icing certification issues, to analytical and experimental simulation of ice frost contamination and its effects of aerodynamics, and to the effects of heavy rain and deicing/anti-icing fluids

    Recent Langley helicopter acoustics contributions

    Get PDF
    The helicopter acoustics program at NASA Langley has included technology for elements of noise control ranging from sources of noise to receivers of noise. The scope of Langley contributions for about the last decade is discussed. Specifically, the resolution of two certification noise quantification issues by subjective acoustics research, the development status of the helicopter system noise prediction program ROTONET are reviewed and the highlights from research on blade rotational, broadband, and blade vortex interaction noise sources are presented. Finally, research contributions on helicopter cabin (or interior) noise control are presented. A bibliography of publications from the Langley helicopter acoustics program for the past 10 years is included
    corecore