7,349 research outputs found

    Implementing and evaluating candidate-based invariant generation

    Get PDF
    The discovery of inductive invariants lies at the heart of static program verification. Presently, many automatic solutions to inductive invariant generation are inflexible, only applicable to certain classes of programs, or unpredictable. An automatic technique that circumvents these deficiencies to some extent is candidate-based invariant generation , whereby a large number of candidate invariants are guessed and then proven to be inductive or rejected using a sound program analyser. This paper describes our efforts to apply candidate-based invariant generation in GPUVerify, a static checker of programs that run on GPUs. We study a set of 383 GPU programs that contain loops, drawn from a number of open source suites and vendor SDKs. Among this set, 253 benchmarks require provision of loop invariants for verification to succeed. We describe the methodology we used to incrementally improve the invariant generation capabilities of GPUVerify to handle these benchmarks, through candidate-based invariant generation , whereby potential program invariants are speculated using cheap static analysis and subsequently either refuted or proven. We also describe a set of experiments that we used to examine the effectiveness of our rules for candidate generation, assessing rules based on their generality (the extent to which they generate candidate invariants), hit rate (the extent to which the generated candidates hold), effectiveness (the extent to which provable candidates actually help in allowing verification to succeed), and influence (the extent to which the success of one generation rule depends on candidates generated by another rule). We believe that our methodology for devising and evaluation candidate generation rules may serve as a useful framework for other researchers interested in candidate-based invariant generation. The candidates produced by GPUVerify help to verify 231 of these 253 programs. An increase in precision, however, has created sluggishness in GPUVerify because more candidates are generated and hence more time is spent on computing those which are inductive invariants. To speed up this process, we have investigated four under-approximating program analyses that aim to reject false candidates quickly and a framework whereby these analyses can run in sequence or in parallel. Across two platforms, running Windows and Linux, our results show that the best combination of these techniques running sequentially speeds up invariant generation across our benchmarks by 1 . 17 × (Windows) and 1 . 01 × (Linux), with per-benchmark best speedups of 93 . 58 × (Windows) and 48 . 34 × (Linux), and worst slowdowns of 10 . 24 × (Windows) and 43 . 31 × (Linux). We find that parallelising the strategies marginally improves overall invariant generation speedups to 1 . 27 × (Windows) and 1 . 11 × (Linux), maintains good best-case speedups of 91 . 18 × (Windows) and 44 . 60 × (Linux), and, importantly, dramatically reduces worst-case slowdowns to 3 . 15 × (Windows) and 3 . 17 × (Linux)

    Combining k-Induction with Continuously-Refined Invariants

    Full text link
    Bounded model checking (BMC) is a well-known and successful technique for finding bugs in software. k-induction is an approach to extend BMC-based approaches from falsification to verification. Automatically generated auxiliary invariants can be used to strengthen the induction hypothesis. We improve this approach and further increase effectiveness and efficiency in the following way: we start with light-weight invariants and refine these invariants continuously during the analysis. We present and evaluate an implementation of our approach in the open-source verification-framework CPAchecker. Our experiments show that combining k-induction with continuously-refined invariants significantly increases effectiveness and efficiency, and outperforms all existing implementations of k-induction-based software verification in terms of successful verification results.Comment: 12 pages, 5 figures, 2 tables, 2 algorithm

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed

    Invariant Synthesis for Incomplete Verification Engines

    Full text link
    We propose a framework for synthesizing inductive invariants for incomplete verification engines, which soundly reduce logical problems in undecidable theories to decidable theories. Our framework is based on the counter-example guided inductive synthesis principle (CEGIS) and allows verification engines to communicate non-provability information to guide invariant synthesis. We show precisely how the verification engine can compute such non-provability information and how to build effective learning algorithms when invariants are expressed as Boolean combinations of a fixed set of predicates. Moreover, we evaluate our framework in two verification settings, one in which verification engines need to handle quantified formulas and one in which verification engines have to reason about heap properties expressed in an expressive but undecidable separation logic. Our experiments show that our invariant synthesis framework based on non-provability information can both effectively synthesize inductive invariants and adequately strengthen contracts across a large suite of programs

    GPUVerify: A Verifier for GPU Kernels

    Get PDF
    We present a technique for verifying race- and divergence-freedom of GPU kernels that are written in mainstream ker-nel programming languages such as OpenCL and CUDA. Our approach is founded on a novel formal operational se-mantics for GPU programming termed synchronous, delayed visibility (SDV) semantics. The SDV semantics provides a precise definition of barrier divergence in GPU kernels and allows kernel verification to be reduced to analysis of a sequential program, thereby completely avoiding the need to reason about thread interleavings, and allowing existing modular techniques for program verification to be leveraged. We describe an efficient encoding for data race detection and propose a method for automatically inferring loop invari-ants required for verification. We have implemented these techniques as a practical verification tool, GPUVerify, which can be applied directly to OpenCL and CUDA source code. We evaluate GPUVerify with respect to a set of 163 kernels drawn from public and commercial sources. Our evaluation demonstrates that GPUVerify is capable of efficient, auto-matic verification of a large number of real-world kernels
    • …
    corecore