10,231 research outputs found

    An Introduction to Slice-Based Cohesion and Coupling Metrics

    Get PDF
    This report provides an overview of slice-based software metrics. It brings together information about the development of the metrics from Weiser’s original idea that program slices may be used in the measurement of program complexity, with alternative slice-based measures proposed by other researchers. In particular, it details two aspects of slice-based metric calculation not covered elsewhere in the literature: output variables and worked examples of the calculations. First, output variables are explained, their use explored and standard reference terms and usage proposed. Calculating slice-based metrics requires a clear understanding of ‘output variables’ because they form the basis for extracting the program slices on which the calculations depend. This report includes a survey of the variation in the definition of output variables used by different research groups and suggests standard terms of reference for these variables. Our study identifies four elements which are combined in the definition of output variables. These are the function return value, modified global variables, modified reference parameters and variables printed or otherwise output by the module. Second, slice-based metric calculations are explained with the aid of worked examples, to assist newcomers to the field. Step-by-step calculations of slice-based cohesion and coupling metrics based on the vertices output by the static analysis tool CodeSurfer (R) are presented and compared with line-based calculations

    Unions of slices are not slices

    Get PDF
    Many approaches to slicing rely upon the 'fact' that the union of two static slices is a valid slice. It is known that static slices constructed using program dependence graph algorithms are valid slices (Reps and Yang, 1988). However, this is not true for other forms of slicing. For example, it has been established that the union of two dynamic slices is not necessarily a valid dynamic slice (Hall, 1995). In this paper this result is extended to show that the union of two static slices is not necessarily a valid slice, based on Weiser's definition of a (static) slice. We also analyse the properties that make the union of different forms of slices a valid slice

    Glossary of Software Engineering Laboratory terms

    Get PDF
    A glossary of terms used in the Software Engineering Laboratory (SEL) is given. The terms are defined within the context of the software development environment for flight dynamics at the Goddard Space Flight Center. A concise reference for clarifying the language employed in SEL documents and data collection forms is given. Basic software engineering concepts are explained and standard definitions for use by SEL personnel are established

    Search based software engineering: Trends, techniques and applications

    Get PDF
    © ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is available from the link below.In the past five years there has been a dramatic increase in work on Search-Based Software Engineering (SBSE), an approach to Software Engineering (SE) in which Search-Based Optimization (SBO) algorithms are used to address problems in SE. SBSE has been applied to problems throughout the SE lifecycle, from requirements and project planning to maintenance and reengineering. The approach is attractive because it offers a suite of adaptive automated and semiautomated solutions in situations typified by large complex problem spaces with multiple competing and conflicting objectives. This article provides a review and classification of literature on SBSE. The work identifies research trends and relationships between the techniques applied and the applications to which they have been applied and highlights gaps in the literature and avenues for further research.EPSRC and E

    Cocomo II as productivity measurement: a case study at KBC.

    Get PDF
    Software productivity is generally measured as the ratio of size over effort, whereby several techniques exist to measure the size. In this paper, we propose the innovative approach to use an estimation model as productivity measurement. This approach is applied in a case-study at the ICT-department of a bank and insurance company. The estimation model, in this case Cocomo II, is used as the norm to judge about productivity of application development projects. This research report describes on the one hand the set-up process of the measurement environment and on the other hand the measurement results. To gain insight in the measurement data, we developed a report which makes it possible to identify productivity improvement areas in the development process of the case-study company.

    On the definition of quantum programming modules

    Get PDF
    There are no doubts that quantum programming and, in general, quantum computing, is one of the most promising areas within computer science and one of the areas where most expectations are being placed in recent years. Although the days when reliable and affordable quantum computers will be available is still a long way off, the explosion of programming languages for quantum programming has grown exponentially in recent years. The software engineering community has been quick to react to the need to adopt and adapt well-known tools and methods for software development, and for the design of new ones tailored to this new programming paradigm. However, many key aspects for its success depend on the establishment of an appropriate conceptual framework for the conception and design of quantum programs. This article discusses the concept of module, key in the software engineering discipline, and establishes initial criteria for determining the cohesion and coupling levels of a module in the field of quantum programming as a first step towards a sound quantum software engineering. As detailed in the article, the conceptual differences between classical and quantum computing are so pronounced that the translation of classical concepts to the new programming approach is not straightforward.This research was funded by Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de Murcia under the ‘Excelence Group Program 19895/GERM/15’
    corecore