484 research outputs found

    Using contextual knowledge in interactive fault localization

    Get PDF
    Tool support for automated fault localization in program debugging is limited because state-of-the-art algorithms often fail to provide efficient help to the user. They usually offer a ranked list of suspicious code elements, but the fault is not guaranteed to be found among the highest ranks. In Spectrum-Based Fault Localization (SBFL) – which uses code coverage information of test cases and their execution outcomes to calculate the ranks –, the developer has to investigate several locations before finding the faulty code element. Yet, all the knowledge she a priori has or acquires during this process is not reused by the SBFL tool. There are existing approaches in which the developer interacts with the SBFL algorithm by giving feedback on the elements of the prioritized list. We propose a new approach called iFL which extends interactive approaches by exploiting contextual knowledge of the user about the next item in the ranked list (e. g., a statement), with which larger code entities (e. g., a whole function) can be repositioned in their suspiciousness. We implemented a closely related algorithm proposed by Gong et al. , called Talk . First, we evaluated iFL using simulated users, and compared the results to SBFL and Talk . Next, we introduced two types of imperfections in the simulation: user’s knowledge and confidence levels. On SIR and Defects4J, results showed notable improvements in fault localization efficiency, even with strong user imperfections. We then empirically evaluated the effectiveness of the approach with real users in two sets of experiments: a quantitative evaluation of the successfulness of using iFL , and a qualitative evaluation of practical uses of the approach with experienced developers in think-aloud sessions

    Code Coverage Measurement and Fault Localization Approaches

    Get PDF
    Code coverage measurement plays an important role in white-box testing, both in industrial practice and academic research. Several areas are highly dependent on code coverage as well, including test case generation, test prioritization, fault localization, and others. Out of these areas, this dissertation focuses on two main topics, and the thesis points are divided into two parts accordingly. The first part consists of one thesis point that discusses the differences between methods for measuring code coverage in Java and the effects of these differences. The second part focuses on a fault localization technique called spectrum-based fault localization that utilizes code coverage to estimate the risk of each program element being faulty. More specifically, the corresponding two thesis points are discussing the improvement of the efficiency of spectrum-based approaches by incorporating external information, e.g., users’ knowledge, and context data extracted from call chains

    Using contextual knowledge in interactive fault localization

    Get PDF
    Tool support for automated fault localization in program debugging is limited because state-of-the-art algorithms often fail to provide efficient help to the user. They usually offer a ranked list of suspicious code elements, but the fault is not guaranteed to be found among the highest ranks. In Spectrum-Based Fault Localization (SBFL) – which uses code coverage information of test cases and their execution outcomes to calculate the ranks –, the developer has to investigate several locations before finding the faulty code element. Yet, all the knowledge she a priori has or acquires during this process is not reused by the SBFL tool. There are existing approaches in which the developer interacts with the SBFL algorithm by giving feedback on the elements of the prioritized list. We propose a new approach called iFL which extends interactive approaches by exploiting contextual knowledge of the user about the next item in the ranked list (e. g., a statement), with which larger code entities (e. g., a whole function) can be repositioned in their suspiciousness. We implemented a closely related algorithm proposed by Gong et al. , called Talk . First, we evaluated iFL using simulated users, and compared the results to SBFL and Talk . Next, we introduced two types of imperfections in the simulation: user’s knowledge and confidence levels. On SIR and Defects4J, results showed notable improvements in fault localization efficiency, even with strong user imperfections. We then empirically evaluated the effectiveness of the approach with real users in two sets of experiments: a quantitative evaluation of the successfulness of using iFL , and a qualitative evaluation of practical uses of the approach with experienced developers in think-aloud sessions

    From start-ups to scale-ups: Opportunities and open problems for static and dynamic program analysis

    Get PDF
    This paper describes some of the challenges and opportunities when deploying static and dynamic analysis at scale, drawing on the authors' experience with the Infer and Sapienz Technologies at Facebook, each of which started life as a research-led start-up that was subsequently deployed at scale, impacting billions of people worldwide. The paper identifies open problems that have yet to receive significant attention from the scientific community, yet which have potential for profound real world impact, formulating these as research questions that, we believe, are ripe for exploration and that would make excellent topics for research projects
    • 

    corecore