8,605 research outputs found

    Towards Static Analysis of Functional Programs using Tree Automata Completion

    Get PDF
    This paper presents the first step of a wider research effort to apply tree automata completion to the static analysis of functional programs. Tree Automata Completion is a family of techniques for computing or approximating the set of terms reachable by a rewriting relation. The completion algorithm we focus on is parameterized by a set E of equations controlling the precision of the approximation and influencing its termination. For completion to be used as a static analysis, the first step is to guarantee its termination. In this work, we thus give a sufficient condition on E and T(F) for completion algorithm to always terminate. In the particular setting of functional programs, this condition can be relaxed into a condition on E and T(C) (terms built on the set of constructors) that is closer to what is done in the field of static analysis, where abstractions are performed on data.Comment: Proceedings of WRLA'14. 201

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    Finite Countermodel Based Verification for Program Transformation (A Case Study)

    Get PDF
    Both automatic program verification and program transformation are based on program analysis. In the past decade a number of approaches using various automatic general-purpose program transformation techniques (partial deduction, specialization, supercompilation) for verification of unreachability properties of computing systems were introduced and demonstrated. On the other hand, the semantics based unfold-fold program transformation methods pose themselves diverse kinds of reachability tasks and try to solve them, aiming at improving the semantics tree of the program being transformed. That means some general-purpose verification methods may be used for strengthening program transformation techniques. This paper considers the question how finite countermodels for safety verification method might be used in Turchin's supercompilation method. We extract a number of supercompilation sub-algorithms trying to solve reachability problems and demonstrate use of an external countermodel finder for solving some of the problems.Comment: In Proceedings VPT 2015, arXiv:1512.0221
    • …
    corecore