210 research outputs found

    A hybrid prognostics approach to estimate the residual useful life of a planetary gearbox with a local defect

    Get PDF
    A hybrid prognostics approach for the monioring of a planetary gearbox with the local defect is presented. This hybrid method can predict the remaining useful life (RUL) of planetary gearbox with a fatigue crack. The method consists of a dynamical model for simulation data generation, a statistical algorithm for feature selection and weighting, and a modified grey model for RUL prediction. Experimental studies are conducted to validate and demonstrate the feasibility of the proposed method for RUL prediction of a cracked sun gear in planetary gearbox. And the validation has a promising result

    Physics-based approach to detect metal-metal contact in the hydrodynamic bearing of a planetary transmission

    Get PDF
    Health condition monitoring, commonly referred as Integrated Vehicle Health Management (IVHM) for fleets or vehicles, studies the current and future health state of a system. Health monitoring techniques based on data driven approaches have proven successful in several areas and are easily scalable; however they do not rely on the understating of the physics of failure; whereas Physics-based Model (PbM) approaches require expert knowledge of the failure modes and are based on the understanding of the component behaviour and degradation mechanisms. The development of IVHM is particularly challenging for legacy aircraft due to the restrictive regulations of the aerospace industry. This thesis proposes a novel PbM technique to detect metal-metal contact in hydrodynamic bearings. The planetary transmission of an aircraft’s Integrated Drive Generator (IDG) is used as a case study. Research on the detection of metal-metal contact in hydrodynamic bearings has focused on data driven approaches using vibration or acoustic emissions rather than on PbMs. The proposed technique estimates metal-metal contact by modelling the physical phenomena involved in the failure mechanism and only the speed, load and temperature are required as inputs, all of them available in the IDG and not requiring any additional sensors. The study of metal-metal in hydrodynamic bearings in the field of tribology has focused on mixed lubrication models of the whole bearing, or computational models accounting for local effect under the hydrodynamic lubrication region. In addition to the IVHM technique, this thesis contributes to the field of tribology by proposing a computational mixed lubrication model capable of studying metal-metal contact locally along the lubricated surface of the bearing. Experimental results of a plain journal bearing have been used to validate the PbM and a replica of the transmission of the IDG has been tested to evaluate the effectiveness of the proposed technique at detecting metal-metal contact

    Prognostics and health management for maintenance practitioners - Review, implementation and tools evaluation.

    Get PDF
    In literature, prognostics and health management (PHM) systems have been studied by many researchers from many different engineering fields to increase system reliability, availability, safety and to reduce the maintenance cost of engineering assets. Many works conducted in PHM research concentrate on designing robust and accurate models to assess the health state of components for particular applications to support decision making. Models which involve mathematical interpretations, assumptions and approximations make PHM hard to understand and implement in real world applications, especially by maintenance practitioners in industry. Prior knowledge to implement PHM in complex systems is crucial to building highly reliable systems. To fill this gap and motivate industry practitioners, this paper attempts to provide a comprehensive review on PHM domain and discusses important issues on uncertainty quantification, implementation aspects next to prognostics feature and tool evaluation. In this paper, PHM implementation steps consists of; (1) critical component analysis, (2) appropriate sensor selection for condition monitoring (CM), (3) prognostics feature evaluation under data analysis and (4) prognostics methodology and tool evaluation matrices derived from PHM literature. Besides PHM implementation aspects, this paper also reviews previous and on-going research in high-speed train bogies to highlight problems faced in train industry and emphasize the significance of PHM for further investigations

    Review of prognostic problem in condition-based maintenance.

    No full text
    International audienceprognostic is nowadays recognized as a key feature in maintenance strategies as it should allow avoiding inopportune maintenance spending. Real prognostic systems are however scarce in industry. That can be explained from different aspects, on of them being the difficulty of choosing an efficient technology ; many approaches to support the prognostic process exist, whose applicability is highly dependent on industrial constraints. Thus, the general purpose of the paper is to explore the way of performing failure prognostics so that manager can act consequently. Diffent aspects of prognostic are discussed. The prognostic process is (re)defined and an overview of prognostic metrics is given. Following that, the "prognostic approaches" are described. The whole aims at giving an overview of the prognostic area, both from the academic and industrial points of views

    A hybrid prognostic methodology for tidal turbine gearboxes

    Get PDF
    Tidal energy is one of promising solutions for reducing greenhouse gas emissions and it is estimated that 100 TWh of electricity could be produced every year from suitable sites around the world. Although premature gearbox failures have plagued the wind turbine industry, and considerable research efforts continue to address this challenge, tidal turbine gearboxes are expected to experience higher mechanical failure rates given they will experience higher torque and thrust forces. In order to minimize the maintenance cost and prevent unexpected failures there exists a fundamental need for prognostic tools that can reliably estimate the current health and predict the future condition of the gearbox.This paper presents a life assessment methodology for tidal turbine gearboxes which was developed with synthetic data generated using a blade element momentum theory (BEMT) model. The latter has been used extensively for performance and load modelling of tidal turbines. The prognostic model developed was validated using experimental data

    Towards a hybrid approach for diagnostics and prognostics of planetary gearboxes

    Get PDF
    The reliable operation of planetary gearboxes is critical for the sustained operation of many machines such as wind turbines and helicopter transmissions. Hybrid methods that make use of the respective advantages of physics-based and data-driven models can be valuable in addressing the unique challenges associated with the condition monitoring of planetary gearboxes. In this dissertation, a hybrid framework for diagnostics and prognostics of planetary gearboxes is proposed. The proposed framework aims to diagnose and predict the root crack length in a planet gear tooth from accelerometer measurements. Physics-based and data-driven models are combined to exploit their respective advantages, and it is assumed that no failure data is available for training these models. Components required for the implementation of the proposed framework are studied separately and challenges associated with each component are discussed. The proposed hybrid framework comprises a health state estimation and health state prediction part. In the health state estimation part of the proposed framework, the crack length is diagnosed from the measured vibration response. To do this, the following model components are implemented: A first finite element model is used to simulate the crack growth path in the planet gear tooth. Thereafter, a second finite element model is used to establish a relationship between the gearbox time varying mesh stiffness, and the crack length in the planet gear tooth. A lumped mass model is then used to model the vibration response of the gearbox housing subject to the gearbox time varying mesh stiffness excitation. The measurements from an accelerometer mounted on the gearbox housing are processed by computing the synchronous average. Finally, these model components are combined with an additional data-driven model for diagnosing the crack length from the measured vibration response through the solution of an inverse problem. After the crack length is diagnosed through the health state estimation model, the Paris crack propagation law and Bayesian state estimation techniques are used to predict the remaining useful life of the gearbox. To validate the proposed hybrid framework, an experimental setup is developed. The experimental setup allows for the measurement of the vibration response of a planetary gearbox with different tooth root crack lengths in the planet gear. However, challenges in reliably detecting the damage in the experimental setup lead to the use of simulated data for studying the respective components of the hybrid method. Studies conducted using simulated data highlighted interesting challenges that need to be overcome before a hybrid diagnostics and prognostics framework for planetary gearboxes can be applied in practice.Dissertation (MSc)--University of Pretoria, 2021.Eskom EPPEIMechanical and Aeronautical EngineeringMscUnrestricte

    30th International Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2017)

    Get PDF
    Proceedings of COMADEM 201

    A Literature Review of Fault Diagnosis Based on Ensemble Learning

    Get PDF
    The accuracy of fault diagnosis is an important indicator to ensure the reliability of key equipment systems. Ensemble learning integrates different weak learning methods to obtain stronger learning and has achieved remarkable results in the field of fault diagnosis. This paper reviews the recent research on ensemble learning from both technical and field application perspectives. The paper summarizes 87 journals in recent web of science and other academic resources, with a total of 209 papers. It summarizes 78 different ensemble learning based fault diagnosis methods, involving 18 public datasets and more than 20 different equipment systems. In detail, the paper summarizes the accuracy rates, fault classification types, fault datasets, used data signals, learners (traditional machine learning or deep learning-based learners), ensemble learning methods (bagging, boosting, stacking and other ensemble models) of these fault diagnosis models. The paper uses accuracy of fault diagnosis as the main evaluation metrics supplemented by generalization and imbalanced data processing ability to evaluate the performance of those ensemble learning methods. The discussion and evaluation of these methods lead to valuable research references in identifying and developing appropriate intelligent fault diagnosis models for various equipment. This paper also discusses and explores the technical challenges, lessons learned from the review and future development directions in the field of ensemble learning based fault diagnosis and intelligent maintenance

    Prognostic-based Life Extension Methodology with Application to Power Generation Systems

    Get PDF
    Practicable life extension of engineering systems would be a remarkable application of prognostics. This research proposes a framework for prognostic-base life extension. This research investigates the use of prognostic data to mobilize the potential residual life. The obstacles in performing life extension include: lack of knowledge, lack of tools, lack of data, and lack of time. This research primarily considers using the acoustic emission (AE) technology for quick-response diagnostic. To be specific, an important feature of AE data was statistically modeled to provide quick, robust and intuitive diagnostic capability. The proposed model was successful to detect the out of control situation when the data of faulty bearing was applied. This research also highlights the importance of self-healing materials. One main component of the proposed life extension framework is the trend analysis module. This module analyzes the pattern of the time-ordered degradation measures. The trend analysis is helpful not only for early fault detection but also to track the improvement in the degradation rate. This research considered trend analysis methods for the prognostic parameters, degradation waveform and multivariate data. In this respect, graphical methods was found appropriate for trend detection of signal features. Hilbert Huang Transform was applied to analyze the trends in waveforms. For multivariate data, it was realized that PCA is able to indicate the trends in the data if accompanied by proper data processing. In addition, two algorithms are introduced to address non-monotonic trends. It seems, both algorithms have the potential to treat the non-monotonicity in degradation data. Although considerable research has been devoted to developing prognostics algorithms, rather less attention has been paid to post-prognostic issues such as maintenance decision making. A multi-objective optimization model is presented for a power generation unit. This model proves the ability of prognostic models to balance between power generation and life extension. In this research, the confronting objective functions were defined as maximizing profit and maximizing service life. The decision variables include the shaft speed and duration of maintenance actions. The results of the optimization models showed clearly that maximizing the service life requires lower shaft speed and longer maintenance time
    • …
    corecore