816 research outputs found

    Conduits of Intratumor Heterogeneity: Centrosome Amplification, Centrosome Clustering and Mitotic Frequency

    Get PDF
    Tumor initiation and progression is dependent on the acquisition and accumulation of multiple driver mutations that acti­vate and fuel oncogenic pathways and deactivate tumor suppressor networks. This complex continuum of non-stochastic genetic changes in accompaniment with error-prone mitoses largely explains why tumors are a mosaic of different cells. Contrary to the long-held notion that tumors are dominated by genetically-identical cells, tumors often contain many different subsets of cells that are remarkably diverse and distinct. The extent of this intratumor heterogeneity has bewildered cancer biologists’ and clinicians alike, as this partly illuminates why most cancer treatments fail. Unsurprisingly, there is no “wonder” drug yet available which can target all the different sub-populations including rare clones, and conquer the war on cancer. Breast tumors harbor ginormous extent of intratumoral heterogeneity, both within primary and metastatic lesions. This revelation essentially calls into question mega clinical endeavors such as the Human Genome Project that have sequenced a single biopsy from a large tumor mass thus precluding realization of the fact that a single tumor mass comprises of cells that present a variety of flavors in genotypic compositions. It is also becoming recognized that intratumor clonal heterogeneity underlies therapeutic resistance. Thus to comprehend the clinical behavior and therapeutic management of tumors, it is imperative to recognize and understand how intratumor heterogeneity arises. To this end, my research proposes to study two main features/cellular traits of tumors that can be quantitatively evaluated as “surrogates” to represent tumor heterogeneity at various stages of the disease: (a) centrosome amplification and clustering, and (b) mitotic frequency. This study aims at interrogating how a collaborative interplay of these “vehicles” support the tumor’s evolutionary agenda, and how we can glean prognostic and predictive information from an accurate determination of these cellular traits

    Exploring the role of fallopian ciliated cells in the pathogenesis of high-grade serous ovarian cancer

    Get PDF
    High-grade serous epithelial ovarian cancer (HGSOC) is the fifth leading cause of cancer death in women and the first among gynecological malignancies. Despite an initial response to standard chemotherapy, most HGSOC patients relapse. To improve treatment options, we must continue investigating tumor biology. Tumor characteristics (e.g., risk factors and epidemiology) are valuable clues to accomplish this task. The two most frequent risk factors for HGSOC are the lifetime number of ovulations, which is associated with increased oxidative stress in the pelvic area caused by ovulation fluid, and a positive family history due to genetic factors. In the attempt to identify novel genetic factors (i.e., genes) associated with HGSOC, we observed that several genes in linkage with HGSOC are expressed in the ciliated cells of the fallopian tube. This finding made us hypothesize that ciliated cells, despite not being the cell of origin for HGSOC, may take part in HGSOC tumor initiation. Specifically, malfunction of the ciliary beat impairs the laminar fluid flow above the fallopian tube epithelia, thus likely reducing the clearance of oxidative stress caused by follicular fluid. Herein, we review the up-to-date findings dealing with HGSOC predisposition with the hypothesis that fallopian ciliated cells take part in HGSOC onset. Finally, we review the up-to-date literature concerning genes that are located in genomic loci associated with epithelial ovarian cancer (EOC) predisposition that are expressed by the fallopian ciliated cells

    AURKA mRNA expression is an independent predictor of poor prognosis in patients with non-small cell lung cancer

    Get PDF
    Deregulation of mitotic spindle genes has been reported to contribute to the development and progression of malignant tumours. The aim of the present study was to explore the association between the expression profiles of Aurora kinases (AURKA, AURKB and AURKC), cytoskeleton-associated protein 5 (CKAP5), discs large-associated protein 5 (DLGAP5), kinesin-like protein 11 (KIF11), microtubule nucleation factor (TPX2), monopolar spindle 1 kinase (TTK), and β-tubulins (TUBB) and (TUBB3) genes and clinicopathological characteristics in human non-small cell lung carcinoma (NSCLC). Reverse transcription-quantitative polymerase chain reaction-based RNA gene expression profiles of 132 NSCLC and 44 adjacent wild-type tissues were generated, and Cox's proportional hazard regression was used to examine associations. With the exception of AURKC, all genes exhibited increased expression in NSCLC tissues. Of the 10 genes examined, only AURKA was significantly associated with prognosis in NSCLC. Multivariate Cox's regression analysis demonstrated that AURKA mRNA expression [hazard ratio (HR), 1.81; 95% confidence interval (CI), 1.16-2.84; P=0.009], age (HR, 1.03; 95% CI, 1.00-1.06; P=0.020), pathological tumour stage 2 (HR, 2.43; 95% CI, 1.16-5.10; P=0.019) and involvement of distal nodes (pathological node stage 2) (HR, 3.14; 95% CI, 1.24-7.99; P=0.016) were independent predictors of poor prognosis in patients with NSCLC. Poor prognosis of patients with increased AURKA expression suggests that those patients may benefit from surrogate therapy with AURKA inhibitors

    Improving treatment of glioblastoma: new insights in targeting cancer stem cells effectively

    Get PDF
    Glioblastoma is the most common primary malignant brain tumour in the adult population. Despite multimodality treatment with surgery, radiotherapy and chemotherapy, outcomes are very poor, with less than 15% of patients alive after two years. Increasing evidence suggests that glioblastoma stem cells (GSCs) are likely to play an important role in the biology of this disease and are involved in treatment resistance and tumour recurrence following standard therapy. My thesis aims to address two main aspects of this research area: 1) optimization of methods to evaluate treatment responses of GSCs and their differentiated counterparts (non-GSCs), with a particular focus on a tissue culture model that resembles more closely the tumoral niche; 2) characterization of cell division and centrosome cycle of GSCs, investigating possible differences between these cells and non-GSCs, that would allow the identification of targets for new therapeutic strategies against glioblastomas. In the first part of my project, I optimized a clonogenic survival assay, to compare sensitivity of GSCs and non-GSCs to various treatments, and I developed the use of a 3-dimentional tissue culture system, that allows analysis of features and radiation responses of these two subpopulations in the presence of specific microenvironmental factors from the tumoral niche. In the second part, I show that GSCs display mitotic spindle abnormalities more frequently than non-GSCs and that they have distinctive features with regards to the centrosome cycle. I also demonstrate that GSCs are more sensitive than non-GSCs to subtle changes in Aurora kinase A activity, which result in a rapid increase in polyploidy and subsequently in senescence, with a consistent reduction in clonogenic survival. Based on these findings, I propose that kinases involved in the centrosome cycle need to be explored as a novel strategy to target GSCs effectively and improve outcomes of glioblastoma patients

    Clinical and Translational Implications of Centrosome Amplification and Clustering in Multiple Malignancies

    Get PDF
    Cancer initiation and progression are multistep processes that rely on the generation and accumulation of non-lethal mutations, which deregulate function of tumor suppressor genes and activate oncogenic pathways. Evolving through a landscape of heterogeneous somatic mutations, mutated cells undergo subsequent selection pressures and the one endowed with the greatest fitness advantage survives giving rise to genetically diverse cell populations resulting in intratumor heterogeneity (ITH). Presence of the abnormal number of centrosomes is one of the key factors contributing towards ITH. Clustering of amplified centrosomes allows cancer cells to avoid mitotic spindle multipolarity that could otherwise result in cell death either by mitotic catastrophe or a high-grade multipolar division yielding intolerably severe aneuploidy. Thus, centrosome clustering enables low-grade chromosomal missegregation and their unequal distribution to daughter cells resulting in chromosomal instability (CIN), thus contributing to neoplastic transformation. Owing to the presence of genetically different cells in a tumor, monotargeted therapy spares clones lacking therapy-specific targets giving them the opportunity to repopulate the tumor with immunity toward the applied therapy and propensity to recur. Therefore, ITH poses major challenges to both clinicians and drug developers as it precludes detection of low-level clones, prediction of tumor evolution, development of drugs to target specific clones and evaluation of effective, yet non-toxic combinatorial regimens to combat ITH. I envision that a comprehensive quantitative analysis of centrosome amplification (CA), which is a bonafide driver of ITH might help better understand clinical behavior and improve therapeutic management of tumors. To this end, my research, presented here, primarily focuses on testing i) the impact of centrosome amplification and centrosome clustering protein (KIFC1) on clinical outcomes in multiple malignancies and ii) the role of tumor hypoxia in inducing centrosome amplification in cancer. Collectively, my findings reveal that CA and KIFC1 are prognostic and predictive in multiple malignancies and that tumor hypoxia plays a crucial role in inducing CA in tumors. This body of work expands our knowledge in causes and clinical implications of CA to help guide treatment decisions and development of precision medicine for multiple malignancies

    Post-translational deregulation of YAP1 is genetically controlled in rat liver cancer and determines the fate and stem-like behavior of the human disease

    Get PDF
    Previous studies showed that YAP1 is over-expressed in hepatocellular carcinoma (HCC). Here we observed higher expression of Yap1/Ctgf axis in dysplastic nodules and HCC chemically-induced in F344 rats, genetically susceptible to hepatocarcinogenesis, than in lesions induced in resistant BN rats. In BN rats, highest increase in Yap1-tyr357, p73 phosphorylation and Caspase 3 cleavage occurred. In human HCCs with poorer prognosis ( 3 years survival; HCCB). In the latter, higher levels of phosphorylated YAP1-ser127, YAP1-tyr357 and p73, YAP1 ubiquitination, and Caspase 3 cleavage occurred. Expression of stemness markers NANOG, OCT-3/4, and CD133 were highest in HCCP and correlated with YAP1 and YAP1-TEAD levels. In HepG2, Huh7, and Hep3B cells, forced YAP1 over-expression led to stem cell markers expression and increased cell viability, whereas inhibition of YAP1 expression by specific siRNA, or transfection of mutant YAP1 which does not bind to TEAD, induced opposite alterations. These changes were associated, in Huh7 cells transfected with YAP1 or YAP1 siRNA, with stimulation or inhibition of cell migration and invasivity, respectively. Furthermore, transcriptome analysis showed that YAP1 transfection in Huh7 cells induces over-expression of genes involved in tumor stemness. In conclusion, Yap1 post-translational modifications favoring its ubiquitination and apoptosis characterize HCC with better prognosis, whereas conditions favoring the formation of YAP1-TEAD complexes are associated with aggressiveness and acquisition of stemness features by HCC cells

    The neurological and non-neurological roles of the primary microcephaly-associated protein ASPM

    Get PDF
    Primary microcephaly (MCPH), is a neurological disorder characterized by small brain size that results in numerous developmental problems, including intellectual disability, motor and speech delays, and seizures. Hitherto, over 30 MCPH causing genes ( MCPHs ) have been identified. Among these MCPHs , MCPH5 , which encodes abnormal spindle-like microcephaly-associated protein (ASPM), is the most frequently mutated gene. ASPM regulates mitotic events, cell proliferation, replication stress response, DNA repair, and tumorigenesis. Moreover, using a data mining approach, we have confirmed that high levels of expression of ASPM correlate with poor prognosis in several types of tumors. Here, we summarize the neurological and non-neurological functions of ASPM and provide insight into its implications for the diagnosis and treatment of MCPH and cancer

    Genomic hallmarks and therapeutic implications of G0 cell cycle arrest in cancer

    Get PDF
    BACKGROUND: Therapy resistance in cancer is often driven by a subpopulation of cells that are temporarily arrested in a non-proliferative G0 state, which is difficult to capture and whose mutational drivers remain largely unknown. RESULTS: We develop methodology to robustly identify this state from transcriptomic signals and characterise its prevalence and genomic constraints in solid primary tumours. We show that G0 arrest preferentially emerges in the context of more stable, less mutated genomes which maintain TP53 integrity and lack the hallmarks of DNA damage repair deficiency, while presenting increased APOBEC mutagenesis. We employ machine learning to uncover novel genomic dependencies of this process and validate the role of the centrosomal gene CEP89 as a modulator of proliferation and G0 arrest capacity. Lastly, we demonstrate that G0 arrest underlies unfavourable responses to various therapies exploiting cell cycle, kinase signalling and epigenetic mechanisms in single-cell data. CONCLUSIONS: We propose a G0 arrest transcriptional signature that is linked with therapeutic resistance and can be used to further study and clinically track this state
    • …
    corecore