20,587 research outputs found

    Profit-based latency problems on the line.

    Get PDF
    The latency problem with profits is a generalization of the minimum latency problem. In this generalization it is not necessary to visit all clients, however, visiting a client may bring a certain revenue. More precisely, in the latency problem with profits, a server and a set of n clients, each with corresponding profit p_i (1 ≤ i ≤ n), are given. The single server is positioned at the origin at time t = 0 and travels with unit speed. When visiting a client, the server receives a revenue of p_i - t, with t the time at which the server reaches client i (1 ≤ i ≤ n). The goal is to select clients and find a route for the server such that total collected revenue is maximized. We formulate a dynamic programming algorithm to solve this problem when all clients are located on a line. We also consider the problem on the line with k servers and prove NP-completeness for the latency problem on the line with k non-identical servers and release dates. In this proof we also settle the complexity of an open problem in de Paepe et al. [4].Minimum latency; Traveling repairman; Dynamic programming; Complexity;

    cISP: A Speed-of-Light Internet Service Provider

    Full text link
    Low latency is a requirement for a variety of interactive network applications. The Internet, however, is not optimized for latency. We thus explore the design of cost-effective wide-area networks that move data over paths very close to great-circle paths, at speeds very close to the speed of light in vacuum. Our cISP design augments the Internet's fiber with free-space wireless connectivity. cISP addresses the fundamental challenge of simultaneously providing low latency and scalable bandwidth, while accounting for numerous practical factors ranging from transmission tower availability to packet queuing. We show that instantiations of cISP across the contiguous United States and Europe would achieve mean latencies within 5% of that achievable using great-circle paths at the speed of light, over medium and long distances. Further, we estimate that the economic value from such networks would substantially exceed their expense

    The effectiveness of loop unrolling for modulo scheduling in clustered VLIW architectures

    Get PDF
    Clustered organizations are becoming a common trend in the design of VLIW architectures. In this work we propose a novel modulo scheduling approach for such architectures. The proposed technique performs the cluster assignment and the instruction scheduling in a single pass, which is shown to be more effective than doing first the assignment and later the scheduling. We also show that loop unrolling significantly enhances the performance of the proposed scheduler especially when the communication channel among clusters is the main performance bottleneck. By selectively unrolling some loops, we can obtain the best performance with the minimum increase in code size. Performance evaluation for the SPECfp95 shows that the clustered architecture achieves about the same IPC (Instructions Per Cycle) as a unified architecture with the same resources. Moreover when the cycle time is taken into account, a 4-cluster configurations is 3.6 times faster than the unified architecture.Peer ReviewedPostprint (published version

    The Green Choice: Learning and Influencing Human Decisions on Shared Roads

    Full text link
    Autonomous vehicles have the potential to increase the capacity of roads via platooning, even when human drivers and autonomous vehicles share roads. However, when users of a road network choose their routes selfishly, the resulting traffic configuration may be very inefficient. Because of this, we consider how to influence human decisions so as to decrease congestion on these roads. We consider a network of parallel roads with two modes of transportation: (i) human drivers who will choose the quickest route available to them, and (ii) ride hailing service which provides an array of autonomous vehicle ride options, each with different prices, to users. In this work, we seek to design these prices so that when autonomous service users choose from these options and human drivers selfishly choose their resulting routes, road usage is maximized and transit delay is minimized. To do so, we formalize a model of how autonomous service users make choices between routes with different price/delay values. Developing a preference-based algorithm to learn the preferences of the users, and using a vehicle flow model related to the Fundamental Diagram of Traffic, we formulate a planning optimization to maximize a social objective and demonstrate the benefit of the proposed routing and learning scheme.Comment: Submitted to CDC 201

    The Rise of Computerized High Frequency Trading: Use and Controversy

    Get PDF
    Over the last decade, there has been a dramatic shift in how securities are traded in the capital markets. Utilizing supercomputers and complex algorithms that pick up on breaking news, company/stock/economic information and price and volume movements, many institutions now make trades in a matter of microseconds, through a practice known as high frequency trading. Today, high frequency traders have virtually phased out the dinosaur floor-traders and average investors of the past. With the recent attempted robbery of one of these high frequency trading platforms from Goldman Sachs this past summer, this rise of the machines has become front page news, generating vast controversy and discourse over this largely secretive and ultra-lucrative practice. Because of this phenomenon, those of us on Main Street are faced with a variety of questions: What exactly is high frequency trading? How does it work? How long has this been going on for? Should it be banned or curtailed? What is the end-game, and how will this shape the future of securities trading and its regulation? This iBrief explores the answers to these questions

    Towards Secure Blockchain-enabled Internet of Vehicles: Optimizing Consensus Management Using Reputation and Contract Theory

    Full text link
    In Internet of Vehicles (IoV), data sharing among vehicles is essential to improve driving safety and enhance vehicular services. To ensure data sharing security and traceability, highefficiency Delegated Proof-of-Stake consensus scheme as a hard security solution is utilized to establish blockchain-enabled IoV (BIoV). However, as miners are selected from miner candidates by stake-based voting, it is difficult to defend against voting collusion between the candidates and compromised high-stake vehicles, which introduces serious security challenges to the BIoV. To address such challenges, we propose a soft security enhancement solution including two stages: (i) miner selection and (ii) block verification. In the first stage, a reputation-based voting scheme for the blockchain is proposed to ensure secure miner selection. This scheme evaluates candidates' reputation by using both historical interactions and recommended opinions from other vehicles. The candidates with high reputation are selected to be active miners and standby miners. In the second stage, to prevent internal collusion among the active miners, a newly generated block is further verified and audited by the standby miners. To incentivize the standby miners to participate in block verification, we formulate interactions between the active miners and the standby miners by using contract theory, which takes block verification security and delay into consideration. Numerical results based on a real-world dataset indicate that our schemes are secure and efficient for data sharing in BIoV.Comment: 12 pages, submitted for possible journal publicatio
    • …
    corecore