1,706 research outputs found

    Secure Cloud-Edge Deployments, with Trust

    Get PDF
    Assessing the security level of IoT applications to be deployed to heterogeneous Cloud-Edge infrastructures operated by different providers is a non-trivial task. In this article, we present a methodology that permits to express security requirements for IoT applications, as well as infrastructure security capabilities, in a simple and declarative manner, and to automatically obtain an explainable assessment of the security level of the possible application deployments. The methodology also considers the impact of trust relations among different stakeholders using or managing Cloud-Edge infrastructures. A lifelike example is used to showcase the prototyped implementation of the methodology

    Performance Evaluation Metrics for Cloud, Fog and Edge Computing: A Review, Taxonomy, Benchmarks and Standards for Future Research

    Get PDF
    Optimization is an inseparable part of Cloud computing, particularly with the emergence of Fog and Edge paradigms. Not only these emerging paradigms demand reevaluating cloud-native optimizations and exploring Fog and Edge-based solutions, but also the objectives require significant shift from considering only latency to energy, security, reliability and cost. Hence, it is apparent that optimization objectives have become diverse and lately Internet of Things (IoT)-specific born objectives must come into play. This is critical as incorrect selection of metrics can mislead the developer about the real performance. For instance, a latency-aware auto-scaler must be evaluated through latency-related metrics as response time or tail latency; otherwise the resource manager is not carefully evaluated even if it can reduce the cost. Given such challenges, researchers and developers are struggling to explore and utilize the right metrics to evaluate the performance of optimization techniques such as task scheduling, resource provisioning, resource allocation, resource scheduling and resource execution. This is challenging due to (1) novel and multi-layered computing paradigm, e.g., Cloud, Fog and Edge, (2) IoT applications with different requirements, e.g., latency or privacy, and (3) not having a benchmark and standard for the evaluation metrics. In this paper, by exploring the literature, (1) we present a taxonomy of the various real-world metrics to evaluate the performance of cloud, fog, and edge computing; (2) we survey the literature to recognize common metrics and their applications; and (3) outline open issues for future research. This comprehensive benchmark study can significantly assist developers and researchers to evaluate performance under realistic metrics and standards to ensure their objectives will be achieved in the production environments

    Efficient application deployment in fog-enabled infrastructures

    Get PDF
    Fog computing is a paradigm that extends cloud computing services to the edge of the network in order to support delay-sensitive Internet of Things (IoT) services. One of the most promising use-cases of fog computing is Smart City scenarios. Fog computing can substantially improve the quality of citywide services by reducing response delays. Owing to geographically distributed and resource-constrained fog nodes and a multitude of IoT devices in Smart Cities, efficient service deployment and end device traffic routing are quite challenging. Therefore, in this paper, we present an Integer Linear Programming (ILP) formulation for the Joint Application Component Placement and Traffic Routing (JAcPTR) problem in which users' delay requirements and the limited traffic processing capacity of application instances are considered. Besides, the JAcPTR enables users and infrastructure managers to easily enforce their locality and management requirements in the deployment of application instances. To cope with the considerably high execution time in large instances of the JAcPTR problem, we propose a fast polynomial-time heuristic to efficiently solve the problem. The performance of the proposed heuristic has been evaluated through extensive simulation. Results show that in large instances of the problem, while the state-of-the-art Mixed Integer Linear Programming (MILP) solver fails to obtain a solution in 50% of the simulation runs in 300 seconds, our proposed heuristic can obtain a near-optimal solution in less than one second

    A survey on mobility-induced service migration in the fog, edge, and related computing paradigms

    Get PDF
    The final publication is available at ACM via http://dx.doi.org/10.1145/3326540With the advent of fog and edge computing paradigms, computation capabilities have been moved toward the edge of the network to support the requirements of highly demanding services. To ensure that the quality of such services is still met in the event of users’ mobility, migrating services across different computing nodes becomes essential. Several studies have emerged recently to address service migration in different edge-centric research areas, including fog computing, multi-access edge computing (MEC), cloudlets, and vehicular clouds. Since existing surveys in this area focus on either VM migration in general or migration in a single research field (e.g., MEC), the objective of this survey is to bring together studies from different, yet related, edge-centric research fields while capturing the different facets they addressed. More specifically, we examine the diversity characterizing the landscape of migration scenarios at the edge, present an objective-driven taxonomy of the literature, and highlight contributions that rather focused on architectural design and implementation. Finally, we identify a list of gaps and research opportunities based on the observation of the current state of the literature. One such opportunity lies in joining efforts from both networking and computing research communities to facilitate future research in this area.Peer ReviewedPreprin

    epcAware: a game-based, energy, performance and cost efficient resource management technique for multi-access edge computing

    Get PDF
    The Internet of Things (IoT) is producing an extraordinary volume of data daily, and it is possible that the data may become useless while on its way to the cloud for analysis, due to longer distances and delays. Fog/edge computing is a new model for analyzing and acting on time-sensitive data (real-time applications) at the network edge, adjacent to where it is produced. The model sends only selected data to the cloud for analysis and long-term storage. Furthermore, cloud services provided by large companies such as Google, can also be localized to minimize the response time and increase service agility. This could be accomplished through deploying small-scale datacenters (reffered to by name as cloudlets) where essential, closer to customers (IoT devices) and connected to a centrealised cloud through networks - which form a multi-access edge cloud (MEC). The MEC setup involves three different parties, i.e. service providers (IaaS), application providers (SaaS), network providers (NaaS); which might have different goals, therefore, making resource management a defïŹcult job. In the literature, various resource management techniques have been suggested in the context of what kind of services should they host and how the available resources should be allocated to customers’ applications, particularly, if mobility is involved. However, the existing literature considers the resource management problem with respect to a single party. In this paper, we assume resource management with respect to all three parties i.e. IaaS, SaaS, NaaS; and suggest a game theoritic resource management technique that minimises infrastructure energy consumption and costs while ensuring applications performance. Our empirical evaluation, using real workload traces from Google’s cluster, suggests that our approach could reduce up to 11.95% energy consumption, and approximately 17.86% user costs with negligible loss in performance. Moreover, IaaS can reduce up to 20.27% energy bills and NaaS can increase their costs savings up to 18.52% as compared to other methods
    • 

    corecore