15,549 research outputs found

    ENPP: Extended Non-preemptive PP-aware Scheduling for Real-time Cloud Services

    Get PDF
    By increasing the use of cloud services and the number of requests to processing tasks with minimum time and costs, the resource allocation and scheduling, especially in real-time applications become more challenging. The problem of resource scheduling, is one of the most important scheduling problems in the area of NP-hard problems. In this paper, we propose an efficient algorithm is proposed to schedule real-time cloud services by considering the resource constraints. The simulation results show that the proposed algorithm shorten the processing time of tasks and decrease the number of canceled tasks

    Towards Autonomic Service Provisioning Systems

    Full text link
    This paper discusses our experience in building SPIRE, an autonomic system for service provision. The architecture consists of a set of hosted Web Services subject to QoS constraints, and a certain number of servers used to run session-based traffic. Customers pay for having their jobs run, but require in turn certain quality guarantees: there are different SLAs specifying charges for running jobs and penalties for failing to meet promised performance metrics. The system is driven by an utility function, aiming at optimizing the average earned revenue per unit time. Demand and performance statistics are collected, while traffic parameters are estimated in order to make dynamic decisions concerning server allocation and admission control. Different utility functions are introduced and a number of experiments aiming at testing their performance are discussed. Results show that revenues can be dramatically improved by imposing suitable conditions for accepting incoming traffic; the proposed system performs well under different traffic settings, and it successfully adapts to changes in the operating environment.Comment: 11 pages, 9 Figures, http://www.wipo.int/pctdb/en/wo.jsp?WO=201002636

    Comparison of agent-based scheduling to look-ahead heuristics for real-time transportation problems

    Get PDF
    We consider the real-time scheduling of full truckload transportation orders with time windows that arrive during schedule execution. Because a fast scheduling method is required, look-ahead heuristics are traditionally used to solve these kinds of problems. As an alternative, we introduce an agent-based approach where intelligent vehicle agents schedule their own routes. They interact with job agents, who strive for minimum transportation costs, using a Vickrey auction for each incoming order. This approach offers several advantages: it is fast, requires relatively little information and facilitates easy schedule adjustments in reaction to information updates. We compare the agent-based approach to more traditional hierarchical heuristics in an extensive simulation experiment. We find that a properly designed multiagent approach performs as good as or even better than traditional methods. Particularly, the multi-agent approach yields less empty miles and a more stable service level

    Dynamic Collection Scheduling Using Remote Asset Monitoring: Case Study in the UK Charity Sector

    Get PDF
    Remote sensing technology is now coming onto the market in the waste collection sector. This technology allows waste and recycling receptacles to report their fill levels at regular intervals. This reporting enables collection schedules to be optimized dynamically to meet true servicing needs in a better way and so reduce transport costs and ensure that visits to clients are made in a timely fashion. This paper describes a real-life logistics problem faced by a leading UK charity that services its textile and book donation banks and its high street stores by using a common fleet of vehicles with various carrying capacities. Use of a common fleet gives rise to a vehicle routing problem in which visits to stores are on fixed days of the week with time window constraints and visits to banks (fitted with remote fill-monitoring technology) are made in a timely fashion so that the banks do not become full before collection. A tabu search algorithm was developed to provide vehicle routes for the next day of operation on the basis of the maximization of profit. A longer look-ahead period was not considered because donation rates to banks are highly variable. The algorithm included parameters that specified the minimum fill level (e.g., 50%) required to allow a visit to a bank and a penalty function used to encourage visits to banks that are becoming full. The results showed that the algorithm significantly reduced visits to banks and increased profit by up to 2.4%, with the best performance obtained when the donation rates were more variable

    Optimized Contract-based Model for Resource Allocation in Federated Geo-distributed Clouds

    Get PDF
    In the era of Big Data, with data growing massively in scale and velocity, cloud computing and its pay-as-you-go modelcontinues to provide significant cost benefits and a seamless service delivery model for cloud consumers. The evolution of small-scaleand large-scale geo-distributed datacenters operated and managed by individual Cloud Service Providers (CSPs) raises newchallenges in terms of effective global resource sharing and management of autonomously-controlled individual datacenter resourcestowards a globally efficient resource allocation model. Earlier solutions for geo-distributed clouds have focused primarily on achievingglobal efficiency in resource sharing, that although tries to maximize the global resource allocation, results in significant inefficiencies inlocal resource allocation for individual datacenters and individual cloud provi ders leading to unfairness in their revenue and profitearned. In this paper, we propose a new contracts-based resource sharing model for federated geo-distributed clouds that allows CSPsto establish resource sharing contracts with individual datacentersapriorifor defined time intervals during a 24 hour time period. Based on the established contracts, individual CSPs employ a contracts cost and duration aware job scheduling and provisioning algorithm that enables jobs to complete and meet their response time requirements while achieving both global resource allocation efficiency and local fairness in the profit earned. The proposed techniques are evaluated through extensive experiments using realistic workloads generated using the SHARCNET cluster trace. The experiments demonstrate the effectiveness, scalability and resource sharing fairness of the proposed model
    • …
    corecore