4,386 research outputs found

    Compiler analysis for trace-level speculative multithreaded architectures

    Get PDF
    Trace-level speculative multithreaded processors exploit trace-level speculation by means of two threads working cooperatively. One thread, called the speculative thread, executes instructions ahead of the other by speculating on the result of several traces. The other thread executes speculated traces and verifies the speculation made by the first thread. In this paper, we propose a static program analysis for identifying candidate traces to be speculated. This approach identifies large regions of code whose live-output values may be successfully predicted. We present several heuristics to determine the best opportunities for dynamic speculation, based on compiler analysis and program profiling information. Simulation results show that the proposed trace recognition techniques achieve on average a speed-up close to 38% for a collection of SPEC2000 benchmarks.Peer ReviewedPostprint (published version

    Modeling and visualizing networked multi-core embedded software energy consumption

    Full text link
    In this report we present a network-level multi-core energy model and a software development process workflow that allows software developers to estimate the energy consumption of multi-core embedded programs. This work focuses on a high performance, cache-less and timing predictable embedded processor architecture, XS1. Prior modelling work is improved to increase accuracy, then extended to be parametric with respect to voltage and frequency scaling (VFS) and then integrated into a larger scale model of a network of interconnected cores. The modelling is supported by enhancements to an open source instruction set simulator to provide the first network timing aware simulations of the target architecture. Simulation based modelling techniques are combined with methods of results presentation to demonstrate how such work can be integrated into a software developer's workflow, enabling the developer to make informed, energy aware coding decisions. A set of single-, multi-threaded and multi-core benchmarks are used to exercise and evaluate the models and provide use case examples for how results can be presented and interpreted. The models all yield accuracy within an average +/-5 % error margin

    Model-driven Scheduling for Distributed Stream Processing Systems

    Full text link
    Distributed Stream Processing frameworks are being commonly used with the evolution of Internet of Things(IoT). These frameworks are designed to adapt to the dynamic input message rate by scaling in/out.Apache Storm, originally developed by Twitter is a widely used stream processing engine while others includes Flink, Spark streaming. For running the streaming applications successfully there is need to know the optimal resource requirement, as over-estimation of resources adds extra cost.So we need some strategy to come up with the optimal resource requirement for a given streaming application. In this article, we propose a model-driven approach for scheduling streaming applications that effectively utilizes a priori knowledge of the applications to provide predictable scheduling behavior. Specifically, we use application performance models to offer reliable estimates of the resource allocation required. Further, this intuition also drives resource mapping, and helps narrow the estimated and actual dataflow performance and resource utilization. Together, this model-driven scheduling approach gives a predictable application performance and resource utilization behavior for executing a given DSPS application at a target input stream rate on distributed resources.Comment: 54 page

    TaskPoint: sampled simulation of task-based programs

    Get PDF
    Sampled simulation is a mature technique for reducing simulation time of single-threaded programs, but it is not directly applicable to simulation of multi-threaded architectures. Recent multi-threaded sampling techniques assume that the workload assigned to each thread does not change across multiple executions of a program. This assumption does not hold for dynamically scheduled task-based programming models. Task-based programming models allow the programmer to specify program segments as tasks which are instantiated many times and scheduled dynamically to available threads. Due to system noise and variation in scheduling decisions, two consecutive executions on the same machine typically result in different instruction streams processed by each thread. In this paper, we propose TaskPoint, a sampled simulation technique for dynamically scheduled task-based programs. We leverage task instances as sampling units and simulate only a fraction of all task instances in detail. Between detailed simulation intervals we employ a novel fast-forward mechanism for dynamically scheduled programs. We evaluate the proposed technique on a set of 19 task-based parallel benchmarks and two different architectures. Compared to detailed simulation, TaskPoint accelerates architectural simulation with 64 simulated threads by an average factor of 19.1 at an average error of 1.8% and a maximum error of 15.0%.This work has been supported by the Spanish Government (Severo Ochoa grants SEV2015-0493, SEV-2011-00067), the Spanish Ministry of Science and Innovation (contract TIN2015-65316-P), Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), the RoMoL ERC Advanced Grant (GA 321253), the European HiPEAC Network of Excellence and the Mont-Blanc project (EU-FP7-610402 and EU-H2020-671697). M. Moreto has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship JCI-2012-15047. M. Casas is supported by the Ministry of Economy and Knowledge of the Government of Catalonia and the Cofund programme of the Marie Curie Actions of the EUFP7 (contract 2013BP B 00243). T.Grass has been partially supported by the AGAUR of the Generalitat de Catalunya (grant 2013FI B 0058).Peer ReviewedPostprint (author's final draft

    Thread-spawning schemes for speculative multithreading

    Get PDF
    Speculative multithreading has been recently proposed to boost performance by means of exploiting thread-level parallelism in applications difficult to parallelize. The performance of these processors heavily depends on the partitioning policy used to split the program into threads. Previous work uses heuristics to spawn speculative threads based on easily-detectable program constructs such as loops or subroutines. In this work we propose a profile-based mechanism to divide programs into threads by searching for those parts of the code that have certain features that could benefit from potential thread-level parallelism. Our profile-based spawning scheme is evaluated on a Clustered Speculative Multithreaded Processor and results show large performance benefits. When the proposed spawning scheme is compared with traditional heuristics, we outperform them by almost 20%. When a realistic value predictor and a 8-cycle thread initialization penalty is considered, the performance difference between them is maintained. The speed-up over a single thread execution is higher than 5x for a 16-thread-unit processor and close to 2x for a 4-thread-unit processor.Peer ReviewedPostprint (published version

    Adaptive Transactional Memories: Performance and Energy Consumption Tradeoffs

    Get PDF
    Energy efficiency is becoming a pressing issue, especially in large data centers where it entails, at the same time, a non-negligible management cost, an enhancement of hardware fault probability, and a significant environmental footprint. In this paper, we study how Software Transactional Memories (STM) can provide benefits on both power saving and the overall applications’ execution performance. This is related to the fact that encapsulating shared-data accesses within transactions gives the freedom to the STM middleware to both ensure consistency and reduce the actual data contention, the latter having been shown to affect the overall power needed to complete the application’s execution. We have selected a set of self-adaptive extensions to existing STM middlewares (namely, TinySTM and R-STM) to prove how self-adapting computation can capture the actual degree of parallelism and/or logical contention on shared data in a better way, enhancing even more the intrinsic benefits provided by STM. Of course, this benefit comes at a cost, which is the actual execution time required by the proposed approaches to precisely tune the execution parameters for reducing power consumption and enhancing execution performance. Nevertheless, the results hereby provided show that adaptivity is a strictly necessary requirement to reduce energy consumption in STM systems: Without it, it is not possible to reach any acceptable level of energy efficiency at all

    BrainFrame: A node-level heterogeneous accelerator platform for neuron simulations

    Full text link
    Objective: The advent of High-Performance Computing (HPC) in recent years has led to its increasing use in brain study through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a single acceleration (or homogeneous) platform to effectively address the complete array of modeling requirements. Approach: In this paper we propose and build BrainFrame, a heterogeneous acceleration platform, incorporating three distinct acceleration technologies, a Dataflow Engine, a Xeon Phi and a GP-GPU. The PyNN framework is also integrated into the platform. As a challenging proof of concept, we analyze the performance of BrainFrame on different instances of a state-of-the-art neuron model, modeling the Inferior- Olivary Nucleus using a biophysically-meaningful, extended Hodgkin-Huxley representation. The model instances take into account not only the neuronal- network dimensions but also different network-connectivity circumstances that can drastically change application workload characteristics. Main results: The synthetic approach of three HPC technologies demonstrated that BrainFrame is better able to cope with the modeling diversity encountered. Our performance analysis shows clearly that the model directly affect performance and all three technologies are required to cope with all the model use cases.Comment: 16 pages, 18 figures, 5 table

    Framework for the Analysis and Configuration of Real-Time OpenMP Applications

    Get PDF
    High-performance cyber-physical applications impose several requirements with respect to performance, functional correctness and non-functional aspects. Nowadays, the design of these systems usually follows a model-driven approach, where models generate executable applications, usually with an automated approach. As these applications might execute in different parallel environments, their behavior becomes very hard to predict, and making the verification of non-functional requirements complicated. In this regard, it is crucial to analyse and understand the impact that the mapping and scheduling of computation have on the real-time response of the applications. In fact, different strategies in these steps of the parallel orchestration may produce significantly different interference, leading to different timing behaviour.Tuning the application parameters and the system configuration proves to be one of the most fitting solutions. The design space can however be very cumbersome for a developer to test manually all combinations of application and system configurations. This paper presents a methodology and a toolset to profile, analyse, and configure the timing behaviour of high-performance cyber-physical applications and the target platforms. The methodology leverages on the possibility of generating a task dependency graph representing the parallel computation to evaluate, through measurements, different mapping configurations and select the one that minimizes response time.This work has been co-funded by the European commission through the AMPERE (H2020 grant agreement N° 745601) project.Peer ReviewedPostprint (author's final draft
    corecore