585 research outputs found

    Characterizing Phishing Threats with Natural Language Processing

    Full text link
    Spear phishing is a widespread concern in the modern network security landscape, but there are few metrics that measure the extent to which reconnaissance is performed on phishing targets. Spear phishing emails closely match the expectations of the recipient, based on details of their experiences and interests, making them a popular propagation vector for harmful malware. In this work we use Natural Language Processing techniques to investigate a specific real-world phishing campaign and quantify attributes that indicate a targeted spear phishing attack. Our phishing campaign data sample comprises 596 emails - all containing a web bug and a Curriculum Vitae (CV) PDF attachment - sent to our institution by a foreign IP space. The campaign was found to exclusively target specific demographics within our institution. Performing a semantic similarity analysis between the senders' CV attachments and the recipients' LinkedIn profiles, we conclude with high statistical certainty (p <104< 10^{-4}) that the attachments contain targeted rather than randomly selected material. Latent Semantic Analysis further demonstrates that individuals who were a primary focus of the campaign received CVs that are highly topically clustered. These findings differentiate this campaign from one that leverages random spam.Comment: This paper has been accepted for publication by the IEEE Conference on Communications and Network Security in September 2015 at Florence, Italy. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Context-based Clustering to Mitigate Phishing Attacks

    Get PDF

    Application of rank correlation, clustering and classification in information security

    Get PDF
    This article is devoted to experimental investigation of a novel application of a clustering technique introduced by the authors recently in order to use robust and stable consensus functions in information security, where it is often necessary to process large data sets and monitor outcomes in real time, as it is required, for example, for intrusion detection. Here we concentrate on a particular case of application to profiling of phishing websites. First, we apply several independent clustering algorithms to a randomized sample of data to obtain independent initial clusterings. Silhouette index is used to determine the number of clusters. Second, rank correlation is used to select a subset of features for dimensionality reduction. We investigate the effectiveness of the Pearson Linear Correlation Coefficient, the Spearman Rank Correlation Coefficient and the Goodman--Kruskal Correlation Coefficient in this application. Third, we use a consensus function to combine independent initial clusterings into one consensus clustering. Fourth, we train fast supervised classification algorithms on the resulting consensus clustering in order to enable them to process the whole large data set as well as new data. The precision and recall of classifiers at the final stage of this scheme are critical for the effectiveness of the whole procedure. We investigated various combinations of several correlation coefficients, consensus functions, and a variety of supervised classification algorithms.<br /

    Performance evaluation of multi-tier ensemble classifiers for phishing websites

    Get PDF
    This article is devoted to large multi-tier ensemble classifiers generated as ensembles of ensembles and applied to phishing websites. Our new ensemble construction is a special case of the general and productive multi-tier approach well known in information security. Many efficient multi-tier classifiers have been considered in the literature. Our new contribution is in generating new large systems as ensembles of ensembles by linking a top-tier ensemble to another middletier ensemble instead of a base classifier so that the top~ tier ensemble can generate the whole system. This automatic generation capability includes many large ensemble classifiers in two tiers simultaneously and automatically combines them into one hierarchical unified system so that one ensemble is an integral part of another one. This new construction makes it easy to set up and run such large systems. The present article concentrates on the investigation of performance of these new multi~tier ensembles for the example of detection of phishing websites. We carried out systematic experiments evaluating several essential ensemble techniques as well as more recent approaches and studying their performance as parts of multi~level ensembles with three tiers. The results presented here demonstrate that new three-tier ensemble classifiers performed better than the base classifiers and standard ensembles included in the system. This example of application to the classification of phishing websites shows that the new method of combining diverse ensemble techniques into a unified hierarchical three-tier ensemble can be applied to increase the performance of classifiers in situations where data can be processed on a large computer

    Augmenting Authentication with Context-Specific Behavioral Biometrics

    Get PDF
    Behavioral biometrics, being non-intrusive and cost-efficient, have the potential to assist user identification and authentication. However, user behaviors can vary significantly for different hardware, software, and applications. Research of behavioral biometrics is needed in the context of a specific application. Moreover, it is hard to collect user data in real world settings to assess how well behavioral biometrics can discriminate users. This work aims to improving authentication by behavioral biometrics obtained for user groups. User data of a webmail application are collected in a large-scale user experiment conducted on Amazon Mechanical Turk. Used in a continuous authentication scheme based on user groups, off-line identity attribution and online authentication analytic schemes are proposed to study the applicability of application-specific behavioral biometrics. Our results suggest that the useful user group identity can be effectively inferred from users’ operational interaction with the email application

    Analyzing Social and Stylometric Features to Identify Spear phishing Emails

    Full text link
    Spear phishing is a complex targeted attack in which, an attacker harvests information about the victim prior to the attack. This information is then used to create sophisticated, genuine-looking attack vectors, drawing the victim to compromise confidential information. What makes spear phishing different, and more powerful than normal phishing, is this contextual information about the victim. Online social media services can be one such source for gathering vital information about an individual. In this paper, we characterize and examine a true positive dataset of spear phishing, spam, and normal phishing emails from Symantec's enterprise email scanning service. We then present a model to detect spear phishing emails sent to employees of 14 international organizations, by using social features extracted from LinkedIn. Our dataset consists of 4,742 targeted attack emails sent to 2,434 victims, and 9,353 non targeted attack emails sent to 5,912 non victims; and publicly available information from their LinkedIn profiles. We applied various machine learning algorithms to this labeled data, and achieved an overall maximum accuracy of 97.76% in identifying spear phishing emails. We used a combination of social features from LinkedIn profiles, and stylometric features extracted from email subjects, bodies, and attachments. However, we achieved a slightly better accuracy of 98.28% without the social features. Our analysis revealed that social features extracted from LinkedIn do not help in identifying spear phishing emails. To the best of our knowledge, this is one of the first attempts to make use of a combination of stylometric features extracted from emails, and social features extracted from an online social network to detect targeted spear phishing emails.Comment: Detection of spear phishing using social media feature

    Automatic generation of meta classifiers with large levels for distributed computing and networking

    Full text link
    This paper is devoted to a case study of a new construction of classifiers. These classifiers are called automatically generated multi-level meta classifiers, AGMLMC. The construction combines diverse meta classifiers in a new way to create a unified system. This original construction can be generated automatically producing classifiers with large levels. Different meta classifiers are incorporated as low-level integral parts of another meta classifier at the top level. It is intended for the distributed computing and networking. The AGMLMC classifiers are unified classifiers with many parts that can operate in parallel. This make it easy to adopt them in distributed applications. This paper introduces new construction of classifiers and undertakes an experimental study of their performance. We look at a case study of their effectiveness in the special case of the detection and filtering of phishing emails. This is a possible important application area for such large and distributed classification systems. Our experiments investigate the effectiveness of combining diverse meta classifiers into one AGMLMC classifier in the case study of detection and filtering of phishing emails. The results show that new classifiers with large levels achieved better performance compared to the base classifiers and simple meta classifiers classifiers. This demonstrates that the new technique can be applied to increase the performance if diverse meta classifiers are included in the system

    A systematic survey of online data mining technology intended for law enforcement

    Get PDF
    As an increasing amount of crime takes on a digital aspect, law enforcement bodies must tackle an online environment generating huge volumes of data. With manual inspections becoming increasingly infeasible, law enforcement bodies are optimising online investigations through data-mining technologies. Such technologies must be well designed and rigorously grounded, yet no survey of the online data-mining literature exists which examines their techniques, applications and rigour. This article remedies this gap through a systematic mapping study describing online data-mining literature which visibly targets law enforcement applications, using evidence-based practices in survey making to produce a replicable analysis which can be methodologically examined for deficiencies
    corecore