8,499 research outputs found

    An Algorithm for Network and Data-aware Placement of Multi-Tier Applications in Cloud Data Centers

    Full text link
    Today's Cloud applications are dominated by composite applications comprising multiple computing and data components with strong communication correlations among them. Although Cloud providers are deploying large number of computing and storage devices to address the ever increasing demand for computing and storage resources, network resource demands are emerging as one of the key areas of performance bottleneck. This paper addresses network-aware placement of virtual components (computing and data) of multi-tier applications in data centers and formally defines the placement as an optimization problem. The simultaneous placement of Virtual Machines and data blocks aims at reducing the network overhead of the data center network infrastructure. A greedy heuristic is proposed for the on-demand application components placement that localizes network traffic in the data center interconnect. Such optimization helps reducing communication overhead in upper layer network switches that will eventually reduce the overall traffic volume across the data center. This, in turn, will help reducing packet transmission delay, increasing network performance, and minimizing the energy consumption of network components. Experimental results demonstrate performance superiority of the proposed algorithm over other approaches where it outperforms the state-of-the-art network-aware application placement algorithm across all performance metrics by reducing the average network cost up to 67% and network usage at core switches up to 84%, as well as increasing the average number of application deployments up to 18%.Comment: Submitted for publication consideration for the Journal of Network and Computer Applications (JNCA). Total page: 28. Number of figures: 15 figure

    Towards Autonomic Service Provisioning Systems

    Full text link
    This paper discusses our experience in building SPIRE, an autonomic system for service provision. The architecture consists of a set of hosted Web Services subject to QoS constraints, and a certain number of servers used to run session-based traffic. Customers pay for having their jobs run, but require in turn certain quality guarantees: there are different SLAs specifying charges for running jobs and penalties for failing to meet promised performance metrics. The system is driven by an utility function, aiming at optimizing the average earned revenue per unit time. Demand and performance statistics are collected, while traffic parameters are estimated in order to make dynamic decisions concerning server allocation and admission control. Different utility functions are introduced and a number of experiments aiming at testing their performance are discussed. Results show that revenues can be dramatically improved by imposing suitable conditions for accepting incoming traffic; the proposed system performs well under different traffic settings, and it successfully adapts to changes in the operating environment.Comment: 11 pages, 9 Figures, http://www.wipo.int/pctdb/en/wo.jsp?WO=201002636

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio
    • …
    corecore