3,745 research outputs found

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Resource-aware scheduling for 2D/3D multi-/many-core processor-memory systems

    Get PDF
    This dissertation addresses the complexities of 2D/3D multi-/many-core processor-memory systems, focusing on two key areas: enhancing timing predictability in real-time multi-core processors and optimizing performance within thermal constraints. The integration of an increasing number of transistors into compact chip designs, while boosting computational capacity, presents challenges in resource contention and thermal management. The first part of the thesis improves timing predictability. We enhance shared cache interference analysis for set-associative caches, advancing the calculation of Worst-Case Execution Time (WCET). This development enables accurate assessment of cache interference and the effectiveness of partitioned schedulers in real-world scenarios. We introduce TCPS, a novel task and cache-aware partitioned scheduler that optimizes cache partitioning based on task-specific WCET sensitivity, leading to improved schedulability and predictability. Our research explores various cache and scheduling configurations, providing insights into their performance trade-offs. The second part focuses on thermal management in 2D/3D many-core systems. Recognizing the limitations of Dynamic Voltage and Frequency Scaling (DVFS) in S-NUCA many-core processors, we propose synchronous thread migrations as a thermal management strategy. This approach culminates in the HotPotato scheduler, which balances performance and thermal safety. We also introduce 3D-TTP, a transient temperature-aware power budgeting strategy for 3D-stacked systems, reducing the need for Dynamic Thermal Management (DTM) activation. Finally, we present 3QUTM, a novel method for 3D-stacked systems that combines core DVFS and memory bank Low Power Modes with a learning algorithm, optimizing response times within thermal limits. This research contributes significantly to enhancing performance and thermal management in advanced processor-memory systems

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress

    UMSL Bulletin 2022-2023

    Get PDF
    The 2022-2023 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1087/thumbnail.jp

    Optimization for Energy Management in the Community Microgrids

    Full text link
    This thesis focuses on improving the energy management strategies for Community Microgrids (CMGs), which are expected to play a crucial role in the future smart grid. CMGs bring many benefits, including increased use of renewable energy, improved reliability, resiliency, and energy efficiency. An Energy Management System (EMS) is a key tool that helps in monitoring, controlling, and optimizing the operations of the CMG in a cost-effective manner. The EMS can include various functionalities like day-ahead generation scheduling, real-time scheduling, uncertainty management, and demand response programs. Generation scheduling in a microgrid is a challenging optimization problem, especially due to the intermittent nature of renewable energy. The power balance constraint, which is the balance between energy demand and generation, is difficult to satisfy due to prediction errors in energy demand and generation. Real-time scheduling, which is based on a shorter prediction horizon, reduces these errors, but the impact of uncertainties cannot be completely eliminated. In regards to demand response programs, it is challenging to design an effective model that motivates customers to voluntarily participate while benefiting the system operator. Mathematical optimization techniques have been widely used to solve power system problems, but their application is limited by the need for specific mathematical properties. Metaheuristic techniques, particularly Evolutionary Algorithms (EAs), have gained popularity for their ability to solve complex and non-linear problems. However, the traditional form of EAs may require significant computational effort for complex energy management problems in the CMG. This thesis aims to enhance the existing methods of EMS in CMGs. Improved techniques are developed for day-ahead generation scheduling, multi-stage real-time scheduling, and demand response implementation. For generation scheduling, the performance of conventional EAs is improved through an efficient heuristic. A new multi-stage scheduling framework is proposed to minimize the impact of uncertainties in real-time operations. In regards to demand response, a memetic algorithm is proposed to solve an incentive-based scheme from the perspective of an aggregator, and a price-based demand response driven by dynamic price optimization is proposed to enhance the electric vehicle hosting capacity. The proposed methods are validated through extensive numerical experiments and comparison with state-of-the-art approaches. The results confirm the effectiveness of the proposed methods in improving energy management in CMGs

    Medicinal cannabis as a potential treatment for chronic pain and anxiety

    Get PDF
    Since its legalisation in Australia in 2016, the most common indications for which medicinal cannabis is prescribed are chronic pain and anxiety. This thesis aimed to explore the real-world use of cannabis for these indications, and the potential of translating this evidence into a clinical trial setting. The effectiveness and tolerability of medicinal cannabis for chronic pain, with a subset analysis on arthritis was explored using data from the CA Clinics Observational Study (CACOS). The chronic pain patients and arthritis subset reported significantly reduced pain intensity, with dry mouth, somnolence, and fatigue the most common AEs reported. The incidence of AEs in this cohort, and the association that these may have with concomitant medicines, cannabis constituents, and dose was also reported. Each patient was taking a median of six concomitant medications. Patients taking a gabapentinoid were more likely to report dizziness, and those taking a tricyclic antidepressant were more likely to report somnolence and anxiety. Next in this thesis clinical trial protocols were developed, the first to examine the efficacy of a transdermal CBD cream on patients with osteoarthritis. The second protocol follows a review on aromatase inhibitor associated-arthralgia, and proposes an oral CBD-extract to improve joint pain and health-related quality of life (HRQoL). Finally, use of cannabis for anxiety was reviewed and the effectiveness and tolerability of cannabis for anxiety, including post-traumatic stress disorder (PTSD) was explored using CACOS data. Significantly reduced anxiety was observed in patients with unspecified anxiety and PTSD, and the most common AEs reported were dry mouth, somnolence, and fatigue. The observed improvements in various HRQoL outcomes in both the chronic pain and anxiety cohorts, and the possible safety concerns raised in this thesis supports ongoing exploration of medicinal cannabis in clinical trial settings
    • …
    corecore