497 research outputs found

    AN EFFICIENT FAULT TOLERANT SYSTEM USING IMPROVED CLUSTERING IN WIRELESS SENSOR NETWORKS

    Get PDF
    In Wireless Sensor Networks (WSNs), Efficient clustering is key for optimal use of available nodes. Fault tolerance to any failure on the network or node level is an essential requirement in this context. Hence, a novel approach towards clustering and multiple object tracking in WSNs is being explored. The Proposed method employs judicious mix of burdening all available nodes including GH (Group Head) to earn energy efficiency and fault tolerance. Initially, node with the maximum residual energy in a cluster becomes group head and node with the second maximum residual energy becomes altruist node, but not mandatory. Later on, selection of cluster head will be based on available residual energy. We use Matlab software as simulation platform to check energy consumption at cluster by evaluation of proposed algorithm. Eventually we evaluated and compare this proposed method against previous method and we demonstrate our model is better optimization than other method such as Traditional clustering in energy consumption rate

    Occupancy monitoring and prediction in ambient intelligent environment

    Get PDF
    Occupancy monitoring and prediction as an influential factor in the extraction of occupants' behavioural patterns for the realisation of ambient intelligent environments is addressed in this research. The proposed occupancy monitoring technique uses occupancy detection sensors with unobtrusive features to monitor occupancy in the environment. Initially the occupancy detection is conducted for a purely single-occupant environment. Then, it is extended to the multipleoccupant environment and associated problems are investigated. Along with the occupancy monitoring, it is aimed to supply prediction techniques with a suitable occupancy signal as the input which can enhance efforts in developing ambient intelligent environments. By predicting the occupancy pattern of monitored occupants, safety, security, the convenience of occupants, and energy saving can be improved. Elderly care and supporting people with health problems like dementia and Alzheimer disease are amongst the applications of such an environment. In the research, environments are considered in different scenarios based on the complexity of the problem including single-occupant and multiple-occupant scenarios. Using simple sensory devices instead of visual equipment without any impact on privacy and her/his normal daily activity, an occupant is monitored in a living or working environment in the single-occupant scenario. ZigBee wireless communication technology is used to collect signals from sensory devices such as motion detection sensors and door contact sensors. All these technologies together including sensors, wireless communication, and tagging are integrated as a wireless sensory agent

    Service Embedding in IoT Networks

    Get PDF

    Reconfigurable Antenna Systems: Platform implementation and low-power matters

    Get PDF
    Antennas are a necessary and often critical component of all wireless systems, of which they share the ever-increasing complexity and the challenges of present and emerging trends. 5G, massive low-orbit satellite architectures (e.g. OneWeb), industry 4.0, Internet of Things (IoT), satcom on-the-move, Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles, all call for highly flexible systems, and antenna reconfigurability is an enabling part of these advances. The terminal segment is particularly crucial in this sense, encompassing both very compact antennas or low-profile antennas, all with various adaptability/reconfigurability requirements. This thesis work has dealt with hardware implementation issues of Radio Frequency (RF) antenna reconfigurability, and in particular with low-power General Purpose Platforms (GPP); the work has encompassed Software Defined Radio (SDR) implementation, as well as embedded low-power platforms (in particular on STM32 Nucleo family of micro-controller). The hardware-software platform work has been complemented with design and fabrication of reconfigurable antennas in standard technology, and the resulting systems tested. The selected antenna technology was antenna array with continuously steerable beam, controlled by voltage-driven phase shifting circuits. Applications included notably Wireless Sensor Network (WSN) deployed in the Italian scientific mission in Antarctica, in a traffic-monitoring case study (EU H2020 project), and into an innovative Global Navigation Satellite Systems (GNSS) antenna concept (patent application submitted). The SDR implementation focused on a low-cost and low-power Software-defined radio open-source platform with IEEE 802.11 a/g/p wireless communication capability. In a second embodiment, the flexibility of the SDR paradigm has been traded off to avoid the power consumption associated to the relevant operating system. Application field of reconfigurable antenna is, however, not limited to a better management of the energy consumption. The analysis has also been extended to satellites positioning application. A novel beamforming method has presented demonstrating improvements in the quality of signals received from satellites. Regarding those who deal with positioning algorithms, this advancement help improving precision on the estimated position
    • …
    corecore