123,974 research outputs found

    A failure recovery planning prototype for Space Station Freedom

    Get PDF
    NASA is investigating the use of advanced automation to enhance crew productivity for Space Station Freedom in numerous areas, including failure management. A prototype is described that uses various advanced automation techniques to generate courses of action whose intents are to recover from a diagnosed failure, and to do so within the constraints levied by the failure and by Freedom's configuration and operating conditions

    Technology, automation, and productivity of stock exchanges: International evidence

    Get PDF
    The paper stresses on the importance of understanding the operational choices, strategies, and performances of stock exchanges as regular operating firms (Arnold et al (1999), and Pirrong (1999)) Using unbalanced panel data on 49 stock exchanges over the period 1989–1998, the paper traces the productivity of stock exchanges over time and across different types and groups of exchanges. We find significant variability in respect of the productivity – revenue and cost efficiency – across these exchanges. On average, North American exchanges are found to be most cost and revenue efficient. However, our findings also indicate that European exchanges have improved the most, in respect of cost efficiency, while exchanges in South America and Asia-Pacific regions are found to be lagging as regards both cost and revenue estimations. The evidence also indicates that investment in technology-related developments effectively influenced cost and revenue efficiency. Moreover, organisational structure and market competition are found to be significantly associated with both cost and revenue efficiency for the exchanges studied, whereas market size and quality are related only to revenue efficiency.stock exchanges; technological progress; technical efficiency

    Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 1A: Summary

    Get PDF
    IPAD was defined as a total system oriented to the product design process. This total system was designed to recognize the product design process, individuals and their design process tasks, and the computer-based IPAD System to aid product design. Principal elements of the IPAD System include the host computer and its interactive system software, new executive and data management software, and an open-ended IPAD library of technical programs to match the intended product design process. The basic goal of the IPAD total system is to increase the productivity of the product design organization. Increases in individual productivity were feasible through automation and computer support of routine information handling. Such proven automation can directly decrease cost and flowtime in the product design process

    TRANSPORT CHARACTERISTICS IN AUTOMATED PRODUCTION

    Get PDF
    In the paper manufacturing automation systems is divided into two classes: rigidautomation and flexible automation. The paper intends to highlight the decrease of transportation timewithin production processes as a result of transportation optimization. The objectives of currentindustry are: product quality and productivity increase, decreasing delivery time, the need to improveworking conditions, the use of specifications for each product. They are analyzed by tracing thetransportation time of a production company form Alba Iulia.manufacturing, transportation optimization, Petri, Markov process, systems flexibility

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    ID slicing and the automated factory

    Get PDF
    The automation of the slicing system utilizing internal-diameter saws for the production of the silicon wafers used in solar arrays is discussed. It is argued that saw productivity can be increased by reducing silicon waste, decreasing usage of consumables, keeping the saw slicing, and increasing the cutting speed. Several machine enhancements utilizing automatic control are discussed. The need for record keeping to anticipate maintenance operations is noted, and a digital serial communication interface with the microprocessor-based saws is recommended. Distributed control of the manufacturing process is discussed in detail, and is recommended as a method for increasing productivity

    Manned Mars mission communication and data management systems

    Get PDF
    A manned Mars mission will involve a small crew and many complex tasks. The productivity of the crew and the entire mission will depend significantly on effective automation of these tasks and the ease with which the crew can interface with them. The technology to support a manned Mars mission is available today; however, evolving software and electronic technology are enabling many interesting possibilities for increasing productivity and safety while reducing life cycle cost. Some of these advanced technologies are identified

    A failure diagnosis and impact assessment prototype for Space Station Freedom

    Get PDF
    NASA is investigating the use of advanced automation to enhance crew productivity for Space Station Freedom in numerous areas, one being failure management. A prototype is described that diagnoses failure sources and assesses the future impacts of those failures on other Freedom entities

    Automation of the longwall mining system

    Get PDF
    Cost effective, safe, and technologically sound applications of automation technology to underground coal mining were identified. The longwall analysis commenced with a general search for government and industry experience of mining automation technology. A brief industry survey was conducted to identify longwall operational, safety, and design problems. The prime automation candidates resulting from the industry experience and survey were: (1) the shearer operation, (2) shield and conveyor pan line advance, (3) a management information system to allow improved mine logistics support, and (4) component fault isolation and diagnostics to reduce untimely maintenance delays. A system network analysis indicated that a 40% improvement in productivity was feasible if system delays associated with all of the above four areas were removed. A technology assessment and conceptual system design of each of the four automation candidate areas showed that state of the art digital computer, servomechanism, and actuator technologies could be applied to automate the longwall system

    Space Station Freedom automation and robotics: An assessment of the potential for increased productivity

    Get PDF
    This report presents the results of a study performed in support of the Space Station Freedom Advanced Development Program, under the sponsorship of the Space Station Engineering (Code MT), Office of Space Flight. The study consisted of the collection, compilation, and analysis of lessons learned, crew time requirements, and other factors influencing the application of advanced automation and robotics, with emphasis on potential improvements in productivity. The lessons learned data collected were based primarily on Skylab, Spacelab, and other Space Shuttle experiences, consisting principally of interviews with current and former crew members and other NASA personnel with relevant experience. The objectives of this report are to present a summary of this data and its analysis, and to present conclusions regarding promising areas for the application of advanced automation and robotics technology to the Space Station Freedom and the potential benefits in terms of increased productivity. In this study, primary emphasis was placed on advanced automation technology because of its fairly extensive utilization within private industry including the aerospace sector. In contrast, other than the Remote Manipulator System (RMS), there has been relatively limited experience with advanced robotics technology applicable to the Space Station. This report should be used as a guide and is not intended to be used as a substitute for official Astronaut Office crew positions on specific issues
    corecore