483 research outputs found

    Three-dimensional urban models in complex rural environments. Proposal for automation in the historical centre of Cehegín.

    Get PDF
    Urban modelling processes are the basis for the management of Smart Cities. Automated workflows are typically used to model large portions of cities with homogeneous urban fabrics. These processes result in very simple three-dimensional models with large discrepancies with reality. However, the case of the historic centres of small cities is different due to the complexity of their urban fabric and the heterogeneity of their buildings. This paper proposes a semi-automatic supervised modelling workflow that allows the elaboration of complex urban fabric models following the CityGML standard and its levels of detail. The case study focuses on the historic centre of Cehegín (Spain). The advantage of this methodology is the use of downloadable data from public SDIs such as the Digital Cadastre (cadastral polygons) and the National Geographic Institute (LiDAR point Keywords: 3D Urban Model; Historical centre; CityGML; LiDAR; GIS Pedro Miguel Jimenez- Vicario PhD. Architect. Associate Professor at the School of Architecture of the Technical University of Cartagena. Department of Architecture and Building Technology. Researcher at GRAMMAR. Cartagena. Spain. clouds with an approximate density of 0.5 pts/ m2). These data are geolocated and processed in GIS, and exported to Rhinoceros-Grasshopper3d where modelling algorithms are implemented for each level of detail, supported by statistical filters and automatic classifiers. This results in richer and more accurate models than those obtained with automatic modellers and can be used for different applications in the field of management and simulation

    High-Throughput System for the Early Quantification of Major Architectural Traits in Olive Breeding Trials Using UAV Images and OBIA Techniques

    Get PDF
    The need for the olive farm modernization have encouraged the research of more efficient crop management strategies through cross-breeding programs to release new olive cultivars more suitable for mechanization and use in intensive orchards, with high quality production and resistance to biotic and abiotic stresses. The advancement of breeding programs are hampered by the lack of efficient phenotyping methods to quickly and accurately acquire crop traits such as morphological attributes (tree vigor and vegetative growth habits), which are key to identify desirable genotypes as early as possible. In this context, an UAV-based high-throughput system for olive breeding program applications was developed to extract tree traits in large-scale phenotyping studies under field conditions. The system consisted of UAV-flight configurations, in terms of flight altitude and image overlaps, and a novel, automatic, and accurate object-based image analysis (OBIA) algorithm based on point clouds, which was evaluated in two experimental trials in the framework of a table olive breeding program, with the aim to determine the earliest date for suitable quantifying of tree architectural traits. Two training systems (intensive and hedgerow) were evaluated at two very early stages of tree growth: 15 and 27 months after planting. Digital Terrain Models (DTMs) were automatically and accurately generated by the algorithm as well as every olive tree identified, independently of the training system and tree age. The architectural traits, specially tree height and crown area, were estimated with high accuracy in the second flight campaign, i.e. 27 months after planting. Differences in the quality of 3D crown reconstruction were found for the growth patterns derived from each training system. These key phenotyping traits could be used in several olive breeding programs, as well as to address some agronomical goals. In addition, this system is cost and time optimized, so that requested architectural traits could be provided in the same day as UAV flights. This high-throughput system may solve the actual bottleneck of plant phenotyping of "linking genotype and phenotype," considered a major challenge for crop research in the 21st century, and bring forward the crucial time of decision making for breeders

    Modelling the world in 3D : aspects of the acquisition, processing, management and analysis of spatial 3D data

    Get PDF

    3d virtual modelling of existing objects by terrestrial photogrammetric methods - case study of Barutana

    Get PDF
    Three dimensional virtual modelling of existing objects (buildings or structures) is applicable in various fields of science and practice: architecture, civil engineering, urbanism, geology, mechanical engineering, video games and movie industry, medicine, archeology, safety of people and goods, etc. Photogrammetry, as a method of obtaining data of three-dimensional spatial structures based on two-dimensional images, is used, thanks to a number of software packages, for creating 3D models of objects and other spatial structures. This study analyses terrestrial semiautomatic and automatic photogrammetric methods, both presented through process of creating 3D model of an old existing historical building - Barutana (military gun powder warehouse), built in Ottoman empire, located in the fortress of the city of Nis in Serbia. The aim of the paper is comparison of two photogrammetric methods - semiautomatic and automatic in accuracy and efficiency through case study of Barutana

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Digital Twinning for 20th Century Concrete Heritage: HBIM Cognitive Model for Torino Esposizioni Halls

    Get PDF
    In the wide scenario of heritage documentation and conservation, the multi-scale nature of digital models is able to twin the real object, as well as to store information and record investigation results, in order to detect and analyse deformation and materials deterioration, especially from a structural point of view. The contribution proposes an integrated approach for the generation of an n-D enriched model, also called a digital twin, able to support the interdisciplinary investigation process conducted on the site and following the processing of the collected data. Particularly for 20th Century concrete heritage, an integrated approach is required in order to adapt the more consolidated approaches to a new conception of the spaces, where structure and architecture are often coincident. The research plans to present the documentation process for the halls of Torino Esposizioni (Turin, Italy), built in the mid-twentieth century and designed by Pier Luigi Nervi. The HBIM paradigm is explored and expanded in order to fulfil the multi-source data requirements and adapt the consolidated reverse modelling processes based on scan-to-BIM solutions. The most relevant contributions of the research reside in the study of the chances of using and adapting the characteristics of the IFC (Industry Foundation Classes) standard to the archiving needs of the diagnostic investigations results so that the digital twin model can meet the requirements of replicability in the context of the architectural heritage and interoperability with respect to the subsequent intervention phases envisaged by the conservation plan. Another crucial innovation is a proposal of a scan-to-BIM process improved by an automated approach performed by VPL (Visual Programming Languages) contribution. Finally, an online visualisation tool enables the HBIM cognitive system to be accessible and shareable by stakeholders involved in the general conservation process

    Generating bridge geometric digital twins from point clouds

    Get PDF
    The automation of digital twinning for existing bridges from point clouds remains unsolved. Extensive manual effort is required to extract object point clusters from point clouds followed by fitting them with accurate 3D shapes. Previous research yielded methods that can automatically generate surface primitives combined with rule-based classification to create labelled cuboids and cylinders. While these methods work well in synthetic datasets or simplified cases, they encounter huge challenges when dealing with realworld point clouds. In addition, bridge geometries, defined with curved alignments and varying elevations, are much more complicated than idealized cases. None of the existing methods can handle these difficulties reliably. The proposed framework employs bridge engineering knowledge that mimics the intelligence of human modellers to detect and model reinforced concrete bridge objects in imperfect point clouds. It directly produces labelled 3D objects in Industry Foundation Classes format without generating low-level shape primitives. Experiments on ten bridge point clouds indicate the framework achieves an overall detection F1-score of 98.4%, an average modelling accuracy of 7.05 cm, and an average modelling time of merely 37.8 seconds. This is the first framework of its kind to achieve high and reliable performance of geometric digital twin generation of existing bridges

    Remote Sensing and Geosciences for Archaeology

    Get PDF
    This book collects more than 20 papers, written by renowned experts and scientists from across the globe, that showcase the state-of-the-art and forefront research in archaeological remote sensing and the use of geoscientific techniques to investigate archaeological records and cultural heritage. Very high resolution satellite images from optical and radar space-borne sensors, airborne multi-spectral images, ground penetrating radar, terrestrial laser scanning, 3D modelling, Geographyc Information Systems (GIS) are among the techniques used in the archaeological studies published in this book. The reader can learn how to use these instruments and sensors, also in combination, to investigate cultural landscapes, discover new sites, reconstruct paleo-landscapes, augment the knowledge of monuments, and assess the condition of heritage at risk. Case studies scattered across Europe, Asia and America are presented: from the World UNESCO World Heritage Site of Lines and Geoglyphs of Nasca and Palpa to heritage under threat in the Middle East and North Africa, from coastal heritage in the intertidal flats of the German North Sea to Early and Neolithic settlements in Thessaly. Beginners will learn robust research methodologies and take inspiration; mature scholars will for sure derive inputs for new research and applications
    corecore