461 research outputs found

    Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management

    Get PDF
    The main aim of this book is to present various implementations of ML methods and metaheuristic algorithms to improve modelling and prediction hydrological and water resources phenomena having vital importance in water resource management

    Multi-Objective and Multi-Attribute Optimisation for Sustainable Development Decision Aiding

    Get PDF
    Optimization is considered as a decision-making process for getting the most out of available resources for the best attainable results. Many real-world problems are multi-objective or multi-attribute problems that naturally involve several competing objectives that need to be optimized simultaneously, while respecting some constraints or involving selection among feasible discrete alternatives. In this Reprint of the Special Issue, 19 research papers co-authored by 88 researchers from 14 different countries explore aspects of multi-objective or multi-attribute modeling and optimization in crisp or uncertain environments by suggesting multiple-attribute decision-making (MADM) and multi-objective decision-making (MODM) approaches. The papers elaborate upon the approaches of state-of-the-art case studies in selected areas of applications related to sustainable development decision aiding in engineering and management, including construction, transportation, infrastructure development, production, and organization management

    Computational and Near-Optimal Trade-Offs in Renewable Electricity System Modelling

    Get PDF
    In the decades to come, the European electricity system must undergo an unprecedented transformation to avert the devastating impacts of climate change. To devise various possibilities for achieving a sustainable yet cost-efficient system, in the thesis at hand, we solve large optimisation problems that coordinate the siting of generation, storage and transmission capacities. Thereby, it is critical to capture the weather-dependent variability of wind and solar power as well as transmission bottlenecks. In addition to modelling at high spatial and temporal resolution, this requires a detailed representation of the electricity grid. However, since the resulting computational challenges limit what can be investigated, compromises on model accuracy must be made, and methods from informatics become increasingly relevant to formulate models efficiently and to compute many scenarios. The first part of the thesis is concerned with justifying such trade-offs between model detail and solving times. The main research question is how to circumvent some of the challenging non-convexities introduced by transmission network representations in joint capacity expansion models while still capturing the core grid physics. We first examine tractable linear approximations of power flow and transmission losses. Subsequently, we develop an efficient reformulation of the discrete transmission expansion planning (TEP) problem based on a cycle decomposition of the network graph, which conveniently also accommodates grid synchronisation options. Because discrete investment decisions aggravate the problem\u27s complexity, we also cover simplifying heuristics that make use of sequential linear programming (SLP) and retrospective discretisation techniques. In the second half, we investigate other trade-offs, namely between least-cost and near-optimal solutions. We systematically explore broad ranges of technologically diverse system configurations that are viable without compromising the system\u27s overall cost-effectiveness. For example, we present solutions that avoid installing onshore wind turbines, bypass new overhead transmission lines, or feature a more regionally balanced distribution of generation capacities. Such alternative designs may be more widely socially accepted, and, thus, knowing about these degrees of freedom is highly policy-relevant. The method we employ to span the space of near-optimal solutions is related to modelling-to-generate-alternatives, a variant of multi-objective optimisation. The robustness of our results is further strengthened by considering technology cost uncertainties. To efficiently sweep the cost parameter space, we leverage multi-fidelity surrogate modelling techniques using sparse polynomial chaos expansion in combination with low-discrepancy sampling and extensive parallelisation on high-performance computing infrastructure

    Spatial and Temporal Distribution of Hydrocarbon Production on the UK Continental Shelf

    Get PDF
    Open Access via the Wiley agreement Petroleum Technology Development Fund. Grant Number: PTDF/ED/OSS/PHD/OU/1188/17Peer reviewedPublisher PD
    • …
    corecore