64,124 research outputs found

    A Seamless Convergence of the Digital and Physical Factory Aiming in Personalized Product Emergence Process (PPEP) for Smart Products within ESB Logistics Learning Factory at Reutlingen University

    Get PDF
    AbstractA seamless convergence of the digital and physical factory aiming in personalized Product Emergence Process (PPEP) for smart products within ESB Logistics Learning Factory at Reutlingen University.A completely new business model with reference to Industrie4.0 and facilitated by 3D Experience Software in today's networked society in which customers expect immediate responses, delightful experience and simple solutions is one of the mission scenarios in the ESB Logistics Learning Factory at ESB Business School (Reutlingen University).The business experience platform provides software solutions for every organization in the company respectively in the factory. An interface with dashboards, project management apps, 3D - design and construction apps with high end visualization, manufacturing and simulation apps as well as intelligence and social network apps in a collaborative interactive environment help the user to learn the creation of a value end to end process for a personalized virtual and later real produced product.Instead of traditional ways of working and a conventional operating factory real workers and robots work semi-intuitive together. Centerpiece in the self-planned interim factory is the smart personalized product, uniquely identifiable and locatable at all times during the production process – a scooter with an individual colored mobile phone – holder for any smart phone produced with a 3D printer in lot size one. Smart products have in the future solutions incorporated internet based services – designed and manufactured - at the costs of mass products. Additionally the scooter is equipped with a retrievable declarative product memory. Monitoring and control is handled by sensor tags and a raspberry positioned on the product. The engineering design and implementation of a changeable production system is guided by a self-execution system that independently find amongst others esplanade workplaces.The imparted competences to students and professionals are project management method SCRUM, customization of workflows by Industrie4.0 principles, the enhancements of products with new personalized intelligent parts, electrical and electronic self-programmed components and the control of access of the product memory information, to plan in a digital engineering environment and set up of the physical factory to produce customer orders. The gained action-orientated experience refers to the chances and requirements for holistic digital and physical systems

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    Get PDF
    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols, system design considerations, model validation, and applications of VR and DES. While summarizing future research directions for this technology combination, the case is made for smart factory adoption of VR DES as a new platform for scenario testing and decision making. It is put that in order for VR DES to fully meet the visualization requirements of both Industry 4.0 and Industrial Internet visions of digital manufacturing, further research is required in the areas of lower latency image processing, DES delivery as a service, gesture recognition for VR DES interaction, and linkage of DES to real-time data streams and Big Data sets

    Exercise as Labour: Quantified Self and the Transformation of Exercise into Labour

    Get PDF
    The recent increase in the use of digital self-tracking devices has given rise to a range of relations to the self often discussed as quantified self (QS). In popular and academic discourse, this development has been discussed variously as a form of narcissistic self-involvement, an advanced expression of panoptical self-surveillance and a potential new dawn for e-health. This article proposes a previously un-theorised consequence of this large-scale observation and analysis of human behaviour; that exercise activity is in the process of being reconfigured as labour. QS will be briefly introduced, and reflected on, subsequently considering some of its key aspects in relation to how these have so far been interpreted and analysed in academic literature. Secondly, the analysis of scholars of “digital labour” and “immaterial labour” will be considered, which will be discussed in relation to what its analysis of the transformations of work in contemporary advanced capitalism can offer to an interpretation of the promotion and management of the self-tracking of exercise activities. Building on this analysis, it will be proposed that a thermodynamic model of the exploitation of potential energy underlies the interest that corporations have shown in self-tracking and that “gamification” and the promotion of an entrepreneurial selfhood is the ideological frame that informs the strategy through which labour value is extracted without payment. Finally, the potential theoretical and political consequences of these insights will be considered

    Perspectives of Integrated “Next Industrial Revolution” Clusters in Poland and Siberia

    Get PDF
    Rozdział z: Functioning of the Local Production Systems in Central and Eastern European Countries and Siberia. Case Studies and Comparative Studies, ed. Mariusz E. Sokołowicz.The paper presents the mapping of potential next industrial revolution clusters in Poland and Siberia. Deindustrialization of the cities and struggles with its consequences are one of the fundamental economic problems in current global economy. Some hope to find an answer to that problem is associated with the idea of next industrial revolution and reindustrialization initiatives. In the paper, projects aimed at developing next industrial revolution clusters are analyzed. The objective of the research was to examine new industrial revolution paradigm as a platform for establishing university-based trans-border industry clusters in Poland and Siberia47 and to raise awareness of next industry revolution initiatives.Monograph financed under a contract of execution of the international scientific project within 7th Framework Programme of the European Union, co-financed by Polish Ministry of Science and Higher Education (title: “Functioning of the Local Production Systems in the Conditions of Economic Crisis (Comparative Analysis and Benchmarking for the EU and Beyond”)). Monografia sfinansowana w oparciu o umowę o wykonanie projektu między narodowego w ramach 7. Programu Ramowego UE, współfinansowanego ze środków Ministerstwa Nauki i Szkolnictwa Wyższego (tytuł projektu: „Funkcjonowanie lokalnych systemów produkcyjnych w warunkach kryzysu gospodarczego (analiza porównawcza i benchmarking w wybranych krajach UE oraz krajach trzecich”))

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed
    corecore