1,086 research outputs found

    Cooperative Strategies for Simultaneous and Broadcast Relay Channels

    Full text link
    Consider the \emph{simultaneous relay channel} (SRC) which consists of a set of relay channels where the source wishes to transmit common and private information to each of the destinations. This problem is recognized as being equivalent to that of sending common and private information to several destinations in presence of helper relays where each channel outcome becomes a branch of the \emph{broadcast relay channel} (BRC). Cooperative schemes and capacity region for a set with two memoryless relay channels are investigated. The proposed coding schemes, based on \emph{Decode-and-Forward} (DF) and \emph{Compress-and-Forward} (CF) must be capable of transmitting information simultaneously to all destinations in such set. Depending on the quality of source-to-relay and relay-to-destination channels, inner bounds on the capacity of the general BRC are derived. Three cases of particular interest are considered: cooperation is based on DF strategy for both users --referred to as DF-DF region--, cooperation is based on CF strategy for both users --referred to as CF-CF region--, and cooperation is based on DF strategy for one destination and CF for the other --referred to as DF-CF region--. These results can be seen as a generalization and hence unification of previous works. An outer-bound on the capacity of the general BRC is also derived. Capacity results are obtained for the specific cases of semi-degraded and degraded Gaussian simultaneous relay channels. Rates are evaluated for Gaussian models where the source must guarantee a minimum amount of information to both users while additional information is sent to each of them.Comment: 32 pages, 7 figures, To appear in IEEE Trans. on Information Theor

    Fast Decoder for Overloaded Uniquely Decodable Synchronous Optical CDMA

    Full text link
    In this paper, we propose a fast decoder algorithm for uniquely decodable (errorless) code sets for overloaded synchronous optical code-division multiple-access (O-CDMA) systems. The proposed decoder is designed in a such a way that the users can uniquely recover the information bits with a very simple decoder, which uses only a few comparisons. Compared to maximum-likelihood (ML) decoder, which has a high computational complexity for even moderate code lengths, the proposed decoder has much lower computational complexity. Simulation results in terms of bit error rate (BER) demonstrate that the performance of the proposed decoder for a given BER requires only 1-2 dB higher signal-to-noise ratio (SNR) than the ML decoder.Comment: arXiv admin note: substantial text overlap with arXiv:1806.0395

    Abstract Hidden Markov Models: a monadic account of quantitative information flow

    Full text link
    Hidden Markov Models, HMM's, are mathematical models of Markov processes with state that is hidden, but from which information can leak. They are typically represented as 3-way joint-probability distributions. We use HMM's as denotations of probabilistic hidden-state sequential programs: for that, we recast them as `abstract' HMM's, computations in the Giry monad D\mathbb{D}, and we equip them with a partial order of increasing security. However to encode the monadic type with hiding over some state X\mathcal{X} we use DX→D2X\mathbb{D}\mathcal{X}\to \mathbb{D}^2\mathcal{X} rather than the conventional X→DX\mathcal{X}{\to}\mathbb{D}\mathcal{X} that suffices for Markov models whose state is not hidden. We illustrate the DX→D2X\mathbb{D}\mathcal{X}\to \mathbb{D}^2\mathcal{X} construction with a small Haskell prototype. We then present uncertainty measures as a generalisation of the extant diversity of probabilistic entropies, with characteristic analytic properties for them, and show how the new entropies interact with the order of increasing security. Furthermore, we give a `backwards' uncertainty-transformer semantics for HMM's that is dual to the `forwards' abstract HMM's - it is an analogue of the duality between forwards, relational semantics and backwards, predicate-transformer semantics for imperative programs with demonic choice. Finally, we argue that, from this new denotational-semantic viewpoint, one can see that the Dalenius desideratum for statistical databases is actually an issue in compositionality. We propose a means for taking it into account

    On the Design of a Novel Joint Network-Channel Coding Scheme for the Multiple Access Relay Channel

    Full text link
    This paper proposes a novel joint non-binary network-channel code for the Time-Division Decode-and-Forward Multiple Access Relay Channel (TD-DF-MARC), where the relay linearly combines -- over a non-binary finite field -- the coded sequences from the source nodes. A method based on an EXIT chart analysis is derived for selecting the best coefficients of the linear combination. Moreover, it is shown that for different setups of the system, different coefficients should be chosen in order to improve the performance. This conclusion contrasts with previous works where a random selection was considered. Monte Carlo simulations show that the proposed scheme outperforms, in terms of its gap to the outage probabilities, the previously published joint network-channel coding approaches. Besides, this gain is achieved by using very short-length codewords, which makes the scheme particularly attractive for low-latency applications.Comment: 28 pages, 9 figures; Submitted to IEEE Journal on Selected Areas in Communications - Special Issue on Theories and Methods for Advanced Wireless Relays, 201

    Dirty Paper Arbitrarily Varying Channel with a State-Aware Adversary

    Full text link
    In this paper, we take an arbitrarily varying channel (AVC) approach to examine the problem of writing on a dirty paper in the presence of an adversary. We consider an additive white Gaussian noise (AWGN) channel with an additive white Gaussian state, where the state is known non-causally to the encoder and the adversary, but not the decoder. We determine the randomized coding capacity of this AVC under the maximal probability of error criterion. Interestingly, it is shown that the jamming adversary disregards the state knowledge to choose a white Gaussian channel input which is independent of the state

    Iteratively Decoded Irregular Variable Length Coding and Sphere-Packing Modulation-Aided Differential Space-Time Spreading

    No full text
    In this paper we consider serially concatenated and iteratively decoded Irregular Variable Length Coding (IrVLC) combined with precoded Differential Space-Time Spreading (DSTS) aided multidimensional Sphere Packing (SP) modulation designed for near-capacity joint source and channel coding. The IrVLC scheme comprises a number of component Variable Length Coding (VLC) codebooks having different coding rates for the sake of encoding particular fractions of the input source symbol stream. The relative length of these source-stream fractions can be chosen with the aid of EXtrinsic Information Transfer (EXIT) charts in order to shape the EXIT curve of the IrVLC codec, so that an open EXIT chart tunnel may be created even at low Eb/N0 values that are close to the capacity bound of the channel. These schemes are shown to be capable of operating within 0.9 dB of the DSTS-SP channel’s capacity bound using an average interleaver length of 113, 100 bits and an effective bandwidth efficiency of 1 bit/s/Hz, assuming ideal Nyquist filtering. By contrast, the equivalent-rate regular VLC-based benchmarker scheme was found to be capable of operating at 1.4 dB from the capacity bound, which is about 1.56 times the corresponding discrepancy of the proposed IrVLC-aided scheme

    CERN CAMAC News Issue #11 March 1977 Special Issue: CAMAC Product Guide

    Get PDF
    CAMAC is a means of interconnecting many peripheral devices through a digital data highway to a data processing device such as a computer

    The Error-Pattern-Correcting Turbo Equalizer

    Full text link
    The error-pattern correcting code (EPCC) is incorporated in the design of a turbo equalizer (TE) with aim to correct dominant error events of the inter-symbol interference (ISI) channel at the output of its matching Viterbi detector. By targeting the low Hamming-weight interleaved errors of the outer convolutional code, which are responsible for low Euclidean-weight errors in the Viterbi trellis, the turbo equalizer with an error-pattern correcting code (TE-EPCC) exhibits a much lower bit-error rate (BER) floor compared to the conventional non-precoded TE, especially for high rate applications. A maximum-likelihood upper bound is developed on the BER floor of the TE-EPCC for a generalized two-tap ISI channel, in order to study TE-EPCC's signal-to-noise ratio (SNR) gain for various channel conditions and design parameters. In addition, the SNR gain of the TE-EPCC relative to an existing precoded TE is compared to demonstrate the present TE's superiority for short interleaver lengths and high coding rates.Comment: This work has been submitted to the special issue of the IEEE Transactions on Information Theory titled: "Facets of Coding Theory: from Algorithms to Networks". This work was supported in part by the NSF Theoretical Foundation Grant 0728676
    • …
    corecore