49 research outputs found

    Approximation to Distribution of Product of Random Variables Using Orthogonal Polynomials for Lognormal Density

    Get PDF
    We derive a closed-form expression for the orthogonal polynomials associated with the general lognormal density. The result can be utilized to construct easily computable approximations for probability density function of a product of random variables, when the considered variates are either independent or correlated. As an example, we have calculated the approximative distribution for the product of Nakagami-m variables. Simulations indicate that accuracy of the proposed approximation is good with small cross-correlations under light fading condition.Comment: submitted to IEEE Communications Lette

    Performance of the Product of Three Nakagami-m Random Variables

    Get PDF
    An output signal from a multi-section wireless relay communication system is equal to the product of the signal envelopes from individual sections. In this paper, a three-sections relay system is considered in the presence of Nakagami-m fading at each section. First, random variable (RV) is formed as the product of three Nakagami-m RVs. For such product, the moments are determined in the closed forms. The first moment is the mean of the signal; the second moment is the average power of the signal, and the third moment is skewness. Then, the Amount of Fading (AoF) is calculated. AoF is a measure of the severity effect of fading in a particular channel model. Besides, all system performance are shown graphically and the parameters influence has been analyzed and discussed

    Second Order Statistics of -Fisher-Snedecor Distribution and Their Application to Burst Error Rate Analysis of Multi-Hop Communications

    Get PDF
    An advantage of using the composite fading models (CFMs) is their ability to concurrently address the impact of multi-path and shadowing phenomena on the system performance in wireless communications. A Fisher-Snedecor (FS) F CFM has been recently proposed as an experimentally verified and tractable fading model that can be efficiently applied for 5G and beyond 5G wireless communication systems. This paper provides second-order (s-order) performance analysis of the product of N independent but not identically distributed (i.n.i.d) FS F random variables (RVs). In particular, accurate and closedform approximations for level crossing rate (LCR) and average fade duration (AFD) of the product of N i.n.i.d FS F(N-FS F) RVs are successfully derived by exploiting a general property of a Laplace approximation method for evaluation of the N -folded integral-form LCR expression. Based on the obtained s-order statistical results, the burst error rate and maximum symbol rate of the N -FS F distribution are addressed and thoroughly examined. The numerical results of the considered performance measures are discussed in relation to the N-FS F multi-path and shadowing severity parameters. Moreover, the impact of the number of hops (N) of the N -FS F CFM on the s-order metrics, the burst error rate and maximum symbol rate are numerically evaluated and investigated. The derived s-order statistical results can be used to address the cooperative relay-assisted (RA) communications for vehicular systems. Monte-Carlo (M - C) simulations for the addressed statistical measures are developed in order to confirm the provided theoretical results.This work was supported in part by UC3M and the European Union's Horizon 2020 Programme under the Marie Sklodowska-Curie Grant through the CONEX-Plus Project under Agreement 801538; in part by the IRENE-EARTH Project under Grant PID2020-115323RB-C33/AEI/10.13039/501100011033; in part by ERDF and the Spanish Government Projects under Grant PID2019-106808RA-I00 AEI/FEDER, UE; in part by CDTI Cervera Project INTEGRA under Grant CER-20211031; in part by the Secretaria d'Universitats i Recerca de la Generalitat de Catalunya under Project 2017-SGR-00376 and Project Fem IoT under Grant 001-P-001662; in part by the European Commission Project CPSoSaware; and in part by the Cost Actions under Grant CA19111, Grant CA20120, and Grant CA16220.Publicad

    Statistics of α - Ό random variables and their applications in wireless multihop relaying and multiple scattering channels

    Get PDF
    Exact results for the probability density function (PDF) and cumulative distribution function (CDF) of the sum of ratios of products (SRP) and the sum of products (SP) of independent α-Ό random variables (RVs) are derived. They are in the form of 1-D integral based on the existing works on the products and ratios of α-Ό RVs. In the derivation, generalized Gamma (GG) ratio approximation (GGRA) is proposed to approximate SRP. Gamma ratio approximation (GRA) is proposed to approximate SRP and the ratio of sums of products (RSP). GG approximation (GGA) and Gamma approximation (GA) are used to approximate SP. The proposed results of the SRP can be used to calculate the outage probability (OP) for wireless multihop relaying systems or multiple scattering channels with interference. The proposed results of the SP can be used to calculate the OP for these systems without interference. In addition, the proposed approximate result of the RSP can be used to calculate the OP of the signal-to-interference ratio (SIR) in a multiple scattering system with interference

    Impact of Pointing Errors on the Performance of Mixed RF/FSO Dual-Hop Transmission Systems

    Full text link
    In this work, the performance analysis of a dual-hop relay transmission system composed of asymmetric radio-frequency (RF)/free-space optical (FSO) links with pointing errors is presented. More specifically, we build on the system model presented in [1] to derive new exact closed-form expressions for the cumulative distribution function, probability density function, moment generating function, and moments of the end-to-end signal-to-noise ratio in terms of the Meijer's G function. We then capitalize on these results to offer new exact closed-form expressions for the higher-order amount of fading, average error rate for binary and M-ary modulation schemes, and the ergodic capacity, all in terms of Meijer's G functions. Our new analytical results were also verified via computer-based Monte-Carlo simulation results.Comment: 6 pages, 3 figure
    corecore