64,131 research outputs found

    Designing for designers: Towards the development of accessible ICT products and services using the VERITAS framework

    Get PDF
    Among key design practices which contribute to the development of inclusive ICT products and services is user testing with people with disabilities. Traditionally, this involves partial or minimal user testing through the usage of standard heuristics, employing external assisting devices, and the direct feedback of impaired users. However, efficiency could be improved if designers could readily analyse the needs of their target audience. The VERITAS framework simulates and systematically analyses how users with various impairments interact with the use of ICT products and services. Findings show that the VERITAS framework is useful to designers, offering an intuitive approach to inclusive design.The work presented in this article forms part of VERITAS, which is funded by the European Commission's 7th Framework Programme (FP7) (grant agreement # 247765 FP7-ICT-2009.7.2)

    Human Arm simulation for interactive constrained environment design

    Get PDF
    During the conceptual and prototype design stage of an industrial product, it is crucial to take assembly/disassembly and maintenance operations in advance. A well-designed system should enable relatively easy access of operating manipulators in the constrained environment and reduce musculoskeletal disorder risks for those manual handling operations. Trajectory planning comes up as an important issue for those assembly and maintenance operations under a constrained environment, since it determines the accessibility and the other ergonomics issues, such as muscle effort and its related fatigue. In this paper, a customer-oriented interactive approach is proposed to partially solve ergonomic related issues encountered during the design stage under a constrained system for the operator's convenience. Based on a single objective optimization method, trajectory planning for different operators could be generated automatically. Meanwhile, a motion capture based method assists the operator to guide the trajectory planning interactively when either a local minimum is encountered within the single objective optimization or the operator prefers guiding the virtual human manually. Besides that, a physical engine is integrated into this approach to provide physically realistic simulation in real time manner, so that collision free path and related dynamic information could be computed to determine further muscle fatigue and accessibility of a product designComment: International Journal on Interactive Design and Manufacturing (IJIDeM) (2012) 1-12. arXiv admin note: substantial text overlap with arXiv:1012.432

    A Universalist strategy for the design of Assistive Technology

    Get PDF
    Assistive Technologies are specialized products aiming to partly compensate for the loss of autonomy experienced by disabled people. Because they address special needs in a highly-segmented market, they are often considered as niche products. To improve their design and make them tend to Universality, we propose the EMFASIS framework (Extended Modularity, Functional Accessibility, and Social Integration Strategy). We first elaborate on how this strategy conciliates niche and Universalist views, which may appear conflicting at first sight. We then present three examples illustrating its application for designing Assistive Technologies: the design of an overbed table, an upper-limb powered orthose and a powered wheelchair. We conclude on the expected outcomes of our strategy for the social integration and participation of disabled people

    Future bathroom: A study of user-centred design principles affecting usability, safety and satisfaction in bathrooms for people living with disabilities

    Get PDF
    Research and development work relating to assistive technology 2010-11 (Department of Health) Presented to Parliament pursuant to Section 22 of the Chronically Sick and Disabled Persons Act 197

    Mixed-methods research: a new approach to evaluating the motivation and satisfaction of university students using advanced visual technologies

    Get PDF
    The final publication is available at link.springer.comA mixed-methods study evaluating the motivation and satisfaction of Architecture degree students using interactive visualization methods is presented in this paper. New technology implementations in the teaching field have been largely extended to all types of levels and educational frameworks. However, these innovations require approval validation and evaluation by the final users, the students. In this paper, the advantages and disadvantages of applying mixed evaluation technology are discussed in a case study of the use of interactive and collaborative tools for the visualization of 3D architectonical models. The main objective was to evaluate Architecture and Building Science students’ the motivation to use and satisfaction with this type of technology and to obtain adequate feedback that allows for the optimization of this type of experiment in future iterations.Postprint (author’s final draft

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Introduction : user studies for digital library development

    Get PDF
    Introductory chapter to the edited collection on user studies in digital library development. Contains a general introduction to the topic and biographical sketches of the contributors.peer-reviewe
    corecore