431 research outputs found

    Virtual Commissioning of Automated Systems

    Get PDF

    Approach to integrate product conceptual design information into a computer-aided design system

    Get PDF
    Commercial computer-aided design systems support the geometric definition of product, but they lack utilities to support initial design stages. Typical tasks such as customer need capture, functional requirement formalization, or design parameter definition are conducted in applications that, for instance, support ?quality function deployment? and ?failure modes and effects analysis? techniques. Such applications are noninteroperable with the computer-aided design systems, leading to discontinuous design information flows. This study addresses this issue and proposes a method to enhance the integration of design information generated in the early design stages into a commercial computer-aided design system. To demonstrate the feasibility of the approach adopted, a prototype application was developed and two case studies were executed

    Natural Language Processing in-and-for Design Research

    Full text link
    We review the scholarly contributions that utilise Natural Language Processing (NLP) methods to support the design process. Using a heuristic approach, we collected 223 articles published in 32 journals and within the period 1991-present. We present state-of-the-art NLP in-and-for design research by reviewing these articles according to the type of natural language text sources: internal reports, design concepts, discourse transcripts, technical publications, consumer opinions, and others. Upon summarizing and identifying the gaps in these contributions, we utilise an existing design innovation framework to identify the applications that are currently being supported by NLP. We then propose a few methodological and theoretical directions for future NLP in-and-for design research

    Natural Language Processing of Requirements for Model-Based Product Design with ENOVIA CATIA V6

    Get PDF
    The enterprise level software application that supports the strategic product-centric, lifecycle-oriented and information-driven Product Lifecycle Management business approach should enable engineers to develop and manage requirements within a Functional Digital Mock-Up. The integrated, model-based product design ENOVIA/CATIA V6 RFLP environment makes it possible to use parametric modelling among requirements, functions, logical units and physical organs. Simulation can therefore be used to verify that the design artefacts comply with the requirements. Nevertheless, when dealing with document-based specifications, the definition of the knowledge parameters for each requirement is a labour-intensive task. Indeed, analysts have no other alternative than to go through the voluminous specifications, to identify the performance requirements and design constraints, and to translate them into knowledge parameters. We propose to use natural language processing techniques to automatically generate Parametric Property-Based Requirements from unstructured and semi-structured specifications. We illustrate our approach through the design of a mechanical ring

    A process model in platform independent and neutral formal representation for design engineering automation

    Get PDF
    An engineering design process as part of product development (PD) needs to satisfy ever-changing customer demands by striking a balance between time, cost and quality. In order to achieve a faster lead-time, improved quality and reduced PD costs for increased profits, automation methods have been developed with the help of virtual engineering. There are various methods of achieving Design Engineering Automation (DEA) with Computer-Aided (CAx) tools such as CAD/CAE/CAM, Product Lifecycle Management (PLM) and Knowledge Based Engineering (KBE). For example, Computer Aided Design (CAD) tools enable Geometry Automation (GA), PLM systems allow for sharing and exchange of product knowledge throughout the PD lifecycle. Traditional automation methods are specific to individual products and are hard-coded and bound by the proprietary tool format. Also, existing CAx tools and PLM systems offer bespoke islands of automation as compared to KBE. KBE as a design method incorporates complete design intent by including re-usable geometric, non-geometric product knowledge as well as engineering process knowledge for DEA including various processes such as mechanical design, analysis and manufacturing. It has been recognised, through an extensive literature review, that a research gap exists in the form of a generic and structured method of knowledge modelling, both informal and formal modelling, of mechanical design process with manufacturing knowledge (DFM/DFA) as part of model based systems engineering (MBSE) for DEA with a KBE approach. There is a lack of a structured technique for knowledge modelling, which can provide a standardised method to use platform independent and neutral formal standards for DEA with generative modelling for mechanical product design process and DFM with preserved semantics. The neutral formal representation through computer or machine understandable format provides open standard usage. This thesis provides a contribution to knowledge by addressing this gap in two-steps: • In the first step, a coherent process model, GPM-DEA is developed as part of MBSE which can be used for modelling of mechanical design with manufacturing knowledge utilising hybrid approach, based on strengths of existing modelling standards such as IDEF0, UML, SysML and addition of constructs as per author’s Metamodel. The structured process model is highly granular with complex interdependencies such as activities, object, function, rule association and includes the effect of the process model on the product at both component and geometric attributes. • In the second step, a method is provided to map the schema of the process model to equivalent platform independent and neutral formal standards using OWL/SWRL ontology for system development using Protégé tool, enabling machine interpretability with semantic clarity for DEA with generative modelling by building queries and reasoning on set of generic SWRL functions developed by the author. Model development has been performed with the aid of literature analysis and pilot use-cases. Experimental verification with test use-cases has confirmed the reasoning and querying capability on formal axioms in generating accurate results. Some of the other key strengths are that knowledgebase is generic, scalable and extensible, hence provides re-usability and wider design space exploration. The generative modelling capability allows the model to generate activities and objects based on functional requirements of the mechanical design process with DFM/DFA and rules based on logic. With the help of application programming interface, a platform specific DEA system such as a KBE tool or a CAD tool enabling GA and a web page incorporating engineering knowledge for decision support can consume relevant part of the knowledgebase

    Patent Data for Engineering Design: A Critical Review and Future Directions

    Full text link
    Patent data have long been used for engineering design research because of its large and expanding size, and widely varying massive amount of design information contained in patents. Recent advances in artificial intelligence and data science present unprecedented opportunities to develop data-driven design methods and tools, as well as advance design science, using the patent database. Herein, we survey and categorize the patent-for-design literature based on its contributions to design theories, methods, tools, and strategies, as well as the types of patent data and data-driven methods used in respective studies. Our review highlights promising future research directions in patent data-driven design research and practice.Comment: Accepted by JCIS
    • …
    corecore