93,257 research outputs found

    From Design to Production Control Through the Integration of Engineering Data Management and Workflow Management Systems

    Full text link
    At a time when many companies are under pressure to reduce "times-to-market" the management of product information from the early stages of design through assembly to manufacture and production has become increasingly important. Similarly in the construction of high energy physics devices the collection of (often evolving) engineering data is central to the subsequent physics analysis. Traditionally in industry design engineers have employed Engineering Data Management Systems (also called Product Data Management Systems) to coordinate and control access to documented versions of product designs. However, these systems provide control only at the collaborative design level and are seldom used beyond design. Workflow management systems, on the other hand, are employed in industry to coordinate and support the more complex and repeatable work processes of the production environment. Commercial workflow products cannot support the highly dynamic activities found both in the design stages of product development and in rapidly evolving workflow definitions. The integration of Product Data Management with Workflow Management can provide support for product development from initial CAD/CAM collaborative design through to the support and optimisation of production workflow activities. This paper investigates this integration and proposes a philosophy for the support of product data throughout the full development and production lifecycle and demonstrates its usefulness in the construction of CMS detectors.Comment: 18 pages, 13 figure

    Mining Event Logs to Support Workflow Resource Allocation

    Full text link
    Workflow technology is widely used to facilitate the business process in enterprise information systems (EIS), and it has the potential to reduce design time, enhance product quality and decrease product cost. However, significant limitations still exist: as an important task in the context of workflow, many present resource allocation operations are still performed manually, which are time-consuming. This paper presents a data mining approach to address the resource allocation problem (RAP) and improve the productivity of workflow resource management. Specifically, an Apriori-like algorithm is used to find the frequent patterns from the event log, and association rules are generated according to predefined resource allocation constraints. Subsequently, a correlation measure named lift is utilized to annotate the negatively correlated resource allocation rules for resource reservation. Finally, the rules are ranked using the confidence measures as resource allocation rules. Comparative experiments are performed using C4.5, SVM, ID3, Na\"ive Bayes and the presented approach, and the results show that the presented approach is effective in both accuracy and candidate resource recommendations.Comment: T. Liu et al., Mining event logs to support workflow resource allocation, Knowl. Based Syst. (2012), http://dx.doi.org/ 10.1016/j.knosys.2012.05.01

    Linking design and manufacturing domains via web-based and enterprise integration technologies

    Get PDF
    The manufacturing industry faces many challenges such as reducing time-to-market and cutting costs. In order to meet these increasing demands, effective methods are need to support the early product development stages by bridging the gap of communicating early design ideas and the evaluation of manufacturing performance. This paper introduces methods of linking design and manufacturing domains using disparate technologies. The combined technologies include knowledge management supporting for product lifecycle management (PLM) systems, enterprise resource planning (ERP) systems, aggregate process planning systems, workflow management and data exchange formats. A case study has been used to demonstrate the use of these technologies, illustrated by adding manufacturing knowledge to generate alternative early process plan which are in turn used by an ERP system to obtain and optimise a rough-cut capacity plan

    Modelling for data management & exchange in Concurrent Engineering - A case study of civil aircraft assembly line

    Get PDF
    This research aims to improve the dataflow performance of the Concurrent Engineering (CE) practice in the detail design stage of the aircraft Assembly Line (AL) in the C919 aircraft project. As the final integrator of the aircraft, Shanghai Aircraft Manufacturing Company Ltd. (SAMC) is responsible for developing the AL with global suppliers. Although CE has been implemented in AL projects to shorten lead time, reduce development cost and improve design quality, the lack of experience and insufficient infrastructure may lead to many challenges in cooperation with distributed suppliers, especially regarding data management/exchange and workflow control. In this research, the particular CE environment and activities in SAMC AL projects were investigated. By assessing the CE performance and benchmarking, the improvement opportunities are identified, and then an activity-oriented workflow and dataflow model is established by decomposing the work process to detail levels. Based on this model, a Product Data Management (PDM) based support platform is proposed to facilitate data management/exchange in dynamic workflow to improve work efficiency and interoperability. This solution is mocked-up on the Siemens Teamcenter 8.1 PLM(Product Lifecycle Management) software and its feasibility is checked. The mock-up is evaluated by SAMC experts and suppliers. The feedback shows the acceptance of the model by experts and the urgency of improving data/work flow design before PLM implementing. The result of this research is useful for enterprises in similar environments transiting from pre-PLM to implementing PLM and who wanting to strengthen CE in the new product development

    Thirty Days and Counting: Conducting Effective Product Trials for Library Resources

    Get PDF
    Product trials for evaluating potential new resources can be a challenge for any library. To be most effective, several key elements must be addressed including determining suitable trial dates, establishing and confirming access, creating appropriate links, publicizing product availability, collecting usage data, and gathering feedback from participants. If one or more of these steps is missed, it is all too easy for trial access to run out before much useful data is gathered. The University Libraries at Virginia Tech have developed a method for managing this process through a Trials Workflow team and the use of free, Web-based project management software from Trello. Readers will learn about our workflow for conducting trials and discover how we work with our vendors to better manage the process for product trials

    Design Patterns for Description-Driven Systems

    Full text link
    In data modelling, product information has most often been handled separately from process information. The integration of product and process models in a unified data model could provide the means by which information could be shared across an enterprise throughout the system lifecycle from design through to production. Recently attempts have been made to integrate these two separate views of systems through identifying common data models. This paper relates description-driven systems to multi-layer architectures and reveals where existing design patterns facilitate the integration of product and process models and where patterns are missing or where existing patterns require enrichment for this integration. It reports on the construction of a so-called description-driven system which integrates Product Data Management (PDM) and Workflow Management (WfM) data models through a common meta-model.Comment: 14 pages, 13 figures. Presented at the 3rd Enterprise Distributed Object Computing EDOC'99 conference. Mannheim, Germany. September 199

    POPIM: Pragmatic online project information management for collaborative product development

    Get PDF
    POPIM (Pragmatic Online Project Information Management) is a prototype web-based platform for managing collaborative product development projects within an extended enterprise environment. A suite of facilities are provided for geographically dispersed project team members to communicate, share, and collaborate on a project in a common workspace where they enjoy online access to the most up to date project information and maintain a high-level data consistency and accumulate experience and knowledgebase. In addition to standard project management functionality such as defining work structure breakdowns, determining work schedules, teaming up with specialists, and allocating resources, POPIM incorporates workflow management (including dependency management), and deliverable management (document management if documents are considered as one kind of deliverables). Individual members have their personalized accounts according to their skills and roles/responsibilities in a project. A project team and its members may maintain their own journals/records. More application-specific functions such as product design review and engineering change management can be implicitly performed through online document forms.published_or_final_versio

    EXPLORATION OF COLLABORATIVE DESIGN SPACES: ENGINEERING INTERACTIONS AND WORKFLOWS IN PRODUCT DEVELOPMENT

    Get PDF
    Product Lifecycle Management (PLM) initiatives can improve an enterprise’s efficiency by increasing collaborative design opportunities within its business structure. PLM solutions provide digital mediums to collaborate on all aspects of a company’s workflow, including engineering, testing, manufacturing, marketing, business, and field support services. This paper examines the major PLM tools and software used to establish a collaborative engineering design space; computer-aided design (CAD), computer-aided engineering (CAE), computer-aided manufacturing (CAM), and product data management (PDM). The interactions between these PLM tools and a design team’s organizational structure are analyzed to determine some of the most effective PLM integration strategies to improve collaboration for all business functions. Engineering enterprises may split their work functions into technical and non-technical categories and match them with PLM solutions to create a collaborative design space that integrates all departments. A case study presents a university design team whose objective was collaborative creation of a digital twin for a scale tracked vehicle. The Siemens Teamcenter software tool was integrated within the team’s design procedures to improve the process. The results of integrating advanced PDM software into their workflow, including troubleshooting issues and problems, were explored in this paper. PDM and workflow interactions throughout the case study produced many unique outcomes that require additional PLM engineering solutions. Overall, advanced PDM software increased collaboration and efficiency of their design process

    Engineering Workflow: The Process in Product Data Technology

    Get PDF
    The prevailing paradigm for enterprises in the new decade is undoubtedly speed. This enterprise view is driven by the availability of e-business technology that enables new forms of collaboration between companies. The rapid developments in e-business also have an impact on the future of engineering organizations. This paper focuses on the early phases of a product’s life cycle, i.e. between initial concept and release to manufacturing. New engineering workflow capabilities are presented, that have been tailored to speed up the engineering of new products
    • 

    corecore