53,263 research outputs found

    Automatic skeletonization and skin attachment for realistic character animation.

    Get PDF
    The realism of character animation is associated with a number of tasks ranging from modelling, skin defonnation, motion generation to rendering. In this research we are concerned with two of them: skeletonization and weight assignment for skin deformation. The fonner is to generate a skeleton, which is placed within the character model and links the motion data to the skin shape of the character. The latter assists the modelling of realistic skin shape when a character is in motion. In the current animation production practice, the task of skeletonization is primarily undertaken by hand, i.e. the animator produces an appropriate skeleton and binds it with the skin model of a character. This is inevitably very time-consuming and costs a lot of labour. In order to improve this issue, in this thesis we present an automatic skeletonization framework. It aims at producing high-quality animatible skeletons without heavy human involvement while allowing the animator to maintain the overall control of the process. In the literature, the tenn skeletonization can have different meanings. Most existing research on skeletonization is in the remit of CAD (Computer Aided Design). Although existing research is of significant reference value to animation, their downside is the skeleton generated is either not appropriate for the particular needs of animation, or the methods are computationally expensive. Although some purpose-build animation skeleton generation techniques exist, unfortunately they rely on complicated post-processing procedures, such as thinning and pruning, which again can be undesirable. The proposed skeletonization framework makes use of a new geometric entity known as the 3D silhouette that is an ordinary silhouette with its depth information recorded. We extract a curve skeleton from two 3D silhouettes of a character detected from its two perpendicular projections. The skeletal joints are identified by down sampling the curve skeleton, leading to the generation of the final animation skeleton. The efficiency and quality are major performance indicators in animation skeleton generation. Our framework achieves the former by providing a 2D solution to the 3D skeletonization problem. Reducing in dimensions brings much faster performances. Experiments and comparisons are carried out to demonstrate the computational simplicity. Its accuracy is also verified via these experiments and comparisons. To link a skeleton to the skin, accordingly we present a skin attachment framework aiming at automatic and reasonable weight distribution. It differs from the conventional algorithms in taking topological information into account during weight computation. An effective range is defined for a joint. Skin vertices located outside the effective range will not be affected by this joint. By this means, we provide a solution to remove the influence of a topologically distant, hence highly likely irrelevant joint on a vertex. A user-defined parameter is also provided in this algorithm, which allows different deformation effects to be obtained according to user's needs. Experiments and comparisons prove that the presented framework results in weight distribution of good quality. Thus it frees animators from tedious manual weight editing. Furthermore, it is flexible to be used with various deformation algorithms

    An improved rotation-invariant thinning algorithm

    Get PDF
    Ahmed & Ward have recently presented an elegant, rule-based rotation-invariant thinning algorithm to produce a single-pixel wide skeleton from a binary image. We show examples where this algorithm fails on two-pixel wide lines and propose a modified method which corrects this shortcoming based on graph connectivity

    Embedded Implicit Stand-ins for Animated Meshes: a Case of Hybrid Modelling

    Get PDF
    In this paper we address shape modelling problems, encountered in computer animation and computer games development that are difficult to solve just using polygonal meshes. Our approach is based on a hybrid modelling concept that combines polygonal meshes with implicit surfaces. A hybrid model consists of an animated polygonal mesh and an approximation of this mesh by a convolution surface stand-in that is embedded within it or is attached to it. The motions of both objects are synchronised using a rigging skeleton. This approach is used to model the interaction between an animated mesh object and a viscoelastic substance, normally modelled in implicit form. The adhesive behaviour of the viscous object is modelled using geometric blending operations on the corresponding implicit surfaces. Another application of this approach is the creation of metamorphosing implicit surface parts that are attached to an animated mesh. A prototype implementation of the proposed approach and several examples of modelling and animation with near real-time preview times are presented

    Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution

    Get PDF
    Of the five echinoderm classes, only the modern sea urchins (euechinoids) generate a precociously specified embryonic micromere lineage that ingresses before gastrulation and then secretes the biomineral embryonic skeleton. The gene regulatory network (GRN) underlying the specification and differentiation of this lineage is now known. Many of the same differentiation genes as are used in the biomineralization of the embryo skeleton are also used to make the similar biomineral of the spines and test plates of the adult body. Here, we determine the components of the regulatory state upstream of these differentiation genes that are shared between embryonic and adult skeletogenesis. An abrupt “break point” in the micromere GRN is thus revealed, on one side of which most of the regulatory genes are used in both, and on the other side of which the regulatory apparatus is entirely micromere-specific. This reveals the specific linkages of the micromere GRN forged in the evolutionary process by which the skeletogenic gene batteries were caused to be activated in the embryonic micromere lineage. We also show, by comparison with adult skeletogenesis in the sea star, a distant echinoderm outgroup, that the regulatory apparatus responsible for driving the skeletogenic differentiation gene batteries is an ancient pleisiomorphic aspect of the echinoderm-specific regulatory heritage

    Developmental changes and novelties in ceratophryid frogs

    Get PDF
    The Neotropical frog genera Ceratophrys, Chacophrys and Lepidobatrachus form the monophyletic family Ceratophryidae. Although in- and out-group relationships are not fully resolved, the monophyly of the three genera is well supported by both morphological and molecular data. Much is known about the morphology of the ceratophryids, but there is little comparative information on how modification of a common ancestral developmental pathway played a role in shaping their particular body plans. Herein, we review morphological variation during ceratophryid ontogeny in order to explore the role of development in their evolution. The ceratophryids are collectively characterized by rapid larval development with respect to other anurans, yet the three genera differ in their postmetamorphic growth rates to sexual maturity. Derived traits in the group can be divided into many homoplastic features that evolved in parallel with those of anurans with fossorial/burrowing behaviors in semiarid environments, and apomorphies. Morphological novelties have evolved in their feeding mechanism, which makes them capable of feeding on exceptional large prey. Lepidobatrachus is unusual in having reduced the ecomorphological differences between its larvae and adults. As a result, both the larvae and the frog are similarly able to capture large prey underwater. Some unique features in Lepidobatrachus are differentiated in the tadpole and then exaggerated in the adult (e.g., the posterior displaced jaw articulation) in a manner unobserved in any other anurans.Fil: Fabrezi, Marissa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Quinzio, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Goldberg, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Cruz, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Chuliver Pereyra, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Wassersug, Richard J.. Dalhousie University Halifax; Canad
    corecore