161 research outputs found

    Progressive Mauve: Multiple alignment of genomes with gene flux and rearrangement

    Full text link
    Multiple genome alignment remains a challenging problem. Effects of recombination including rearrangement, segmental duplication, gain, and loss can create a mosaic pattern of homology even among closely related organisms. We describe a method to align two or more genomes that have undergone large-scale recombination, particularly genomes that have undergone substantial amounts of gene gain and loss (gene flux). The method utilizes a novel alignment objective score, referred to as a sum-of-pairs breakpoint score. We also apply a probabilistic alignment filtering method to remove erroneous alignments of unrelated sequences, which are commonly observed in other genome alignment methods. We describe new metrics for quantifying genome alignment accuracy which measure the quality of rearrangement breakpoint predictions and indel predictions. The progressive genome alignment algorithm demonstrates markedly improved accuracy over previous approaches in situations where genomes have undergone realistic amounts of genome rearrangement, gene gain, loss, and duplication. We apply the progressive genome alignment algorithm to a set of 23 completely sequenced genomes from the genera Escherichia, Shigella, and Salmonella. The 23 enterobacteria have an estimated 2.46Mbp of genomic content conserved among all taxa and total unique content of 15.2Mbp. We document substantial population-level variability among these organisms driven by homologous recombination, gene gain, and gene loss. Free, open-source software implementing the described genome alignment approach is available from http://gel.ahabs.wisc.edu/mauve .Comment: Revision dated June 19, 200

    RasBhari: optimizing spaced seeds for database searching, read mapping and alignment-free sequence comparison

    Full text link
    Many algorithms for sequence analysis rely on word matching or word statistics. Often, these approaches can be improved if binary patterns representing match and don't-care positions are used as a filter, such that only those positions of words are considered that correspond to the match positions of the patterns. The performance of these approaches, however, depends on the underlying patterns. Herein, we show that the overlap complexity of a pattern set that was introduced by Ilie and Ilie is closely related to the variance of the number of matches between two evolutionarily related sequences with respect to this pattern set. We propose a modified hill-climbing algorithm to optimize pattern sets for database searching, read mapping and alignment-free sequence comparison of nucleic-acid sequences; our implementation of this algorithm is called rasbhari. Depending on the application at hand, rasbhari can either minimize the overlap complexity of pattern sets, maximize their sensitivity in database searching or minimize the variance of the number of pattern-based matches in alignment-free sequence comparison. We show that, for database searching, rasbhari generates pattern sets with slightly higher sensitivity than existing approaches. In our Spaced Words approach to alignment-free sequence comparison, pattern sets calculated with rasbhari led to more accurate estimates of phylogenetic distances than the randomly generated pattern sets that we previously used. Finally, we used rasbhari to generate patterns for short read classification with CLARK-S. Here too, the sensitivity of the results could be improved, compared to the default patterns of the program. We integrated rasbhari into Spaced Words; the source code of rasbhari is freely available at http://rasbhari.gobics.de

    Fast Spaced Seed Hashing

    Get PDF
    Hashing k-mers is a common function across many bioinformatics applications and it is widely used for indexing, querying and rapid similarity search. Recently, spaced seeds, a special type of pattern that accounts for errors or mutations, are routinely used instead of k-mers. Spaced seeds allow to improve the sensitivity, with respect to k-mers, in many applications, however the hashing of spaced seeds increases substantially the computational time. Hence, the ability to speed up hashing operations of spaced seeds would have a major impact in the field, making spaced seed applications not only accurate, but also faster and more efficient. In this paper we address the problem of efficient spaced seed hashing. The proposed algorithm exploits the similarity of adjacent spaced seed hash values in an input sequence in order to efficiently compute the next hash. We report a series of experiments on NGS reads hashing using several spaced seeds. In the experiments, our algorithm can compute the hashing values of spaced seeds with a speedup, with respect to the traditional approach, between 1.6x to 5.3x, depending on the structure of the spaced seed

    progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement

    Get PDF
    Multiple genome alignment remains a challenging problem. Effects of recombination including rearrangement, segmental duplication, gain, and loss can create a mosaic pattern of homology even among closely related organisms.We describe a new method to align two or more genomes that have undergone rearrangements due to recombination and substantial amounts of segmental gain and loss (flux). We demonstrate that the new method can accurately align regions conserved in some, but not all, of the genomes, an important case not handled by our previous work. The method uses a novel alignment objective score called a sum-of-pairs breakpoint score, which facilitates accurate detection of rearrangement breakpoints when genomes have unequal gene content. We also apply a probabilistic alignment filtering method to remove erroneous alignments of unrelated sequences, which are commonly observed in other genome alignment methods. We describe new metrics for quantifying genome alignment accuracy which measure the quality of rearrangement breakpoint predictions and indel predictions. The new genome alignment algorithm demonstrates high accuracy in situations where genomes have undergone biologically feasible amounts of genome rearrangement, segmental gain and loss. We apply the new algorithm to a set of 23 genomes from the genera Escherichia, Shigella, and Salmonella. Analysis of whole-genome multiple alignments allows us to extend the previously defined concepts of core- and pan-genomes to include not only annotated genes, but also non-coding regions with potential regulatory roles. The 23 enterobacteria have an estimated core-genome of 2.46Mbp conserved among all taxa and a pan-genome of 15.2Mbp. We document substantial population-level variability among these organisms driven by segmental gain and loss. Interestingly, much variability lies in intergenic regions, suggesting that the Enterobacteriacae may exhibit regulatory divergence.The multiple genome alignments generated by our software provide a platform for comparative genomic and population genomic studies. Free, open-source software implementing the described genome alignment approach is available from http://gel.ahabs.wisc.edu/mauve

    The rise and fall of breakpoint reuse depending on genome resolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During evolution, large-scale genome rearrangements of chromosomes shuffle the order of homologous genome sequences ("synteny blocks") across species. Some years ago, a controversy erupted in genome rearrangement studies over whether rearrangements recur, causing breakpoints to be reused.</p> <p>Methods</p> <p>We investigate this controversial issue using the synteny block's for human-mouse-rat reported by Bourque <it>et al</it>. and a series of synteny blocks we generated using Mauve at resolutions ranging from coarse to very fine-scale. We conducted analyses to test how resolution affects the traditional measure of the breakpoint reuse rate<it>.</it></p> <p>Results</p> <p>We found that the inversion-based breakpoint reuse rate is low at fine-scale synteny block resolution and that it rises and eventually falls as synteny block resolution decreases. By analyzing the cycle structure of the breakpoint graph of human-mouse-rat synteny blocks for human-mouse and comparing with theoretically derived distributions for random genome rearrangements, we showed that the implied genome rearrangements at each level of resolution become more “random” as synteny block resolution diminishes. At highest synteny block resolutions the Hannenhalli-Pevzner inversion distance deviates from the Double Cut and Join distance, possibly due to small-scale transpositions or simply due to inclusion of erroneous synteny blocks. At synteny block resolutions as coarse as the Bourque <it>et al</it>. blocks, we show the breakpoint graph cycle structure has already converged to the pattern expected for a random distribution of synteny blocks.</p> <p>Conclusions</p> <p>The inferred breakpoint reuse rate depends on synteny block resolution in human-mouse genome comparisons. At fine-scale resolution, the cycle structure for the transformation appears less random compared to that for coarse resolution. Small synteny blocks may contain critical information for accurate reconstruction of genome rearrangement history and parameters.</p

    Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis

    Get PDF
    We show how the discovery of robust scalable numerical solvers for arbitrary bounded linear operators can be automated as a Game Theory problem by reformulating the process of computing with partial information and limited resources as that of playing underlying hierarchies of adversarial information games. When the solution space is a Banach space BB endowed with a quadratic norm \|\cdot\|, the optimal measure (mixed strategy) for such games (e.g. the adversarial recovery of uBu\in B, given partial measurements [ϕi,u][\phi_i, u] with ϕiB\phi_i\in B^*, using relative error in \|\cdot\|-norm as a loss) is a centered Gaussian field ξ\xi solely determined by the norm \|\cdot\|, whose conditioning (on measurements) produces optimal bets. When measurements are hierarchical, the process of conditioning this Gaussian field produces a hierarchy of elementary bets (gamblets). These gamblets generalize the notion of Wavelets and Wannier functions in the sense that they are adapted to the norm \|\cdot\| and induce a multi-resolution decomposition of BB that is adapted to the eigensubspaces of the operator defining the norm \|\cdot\|. When the operator is localized, we show that the resulting gamblets are localized both in space and frequency and introduce the Fast Gamblet Transform (FGT) with rigorous accuracy and (near-linear) complexity estimates. As the FFT can be used to solve and diagonalize arbitrary PDEs with constant coefficients, the FGT can be used to decompose a wide range of continuous linear operators (including arbitrary continuous linear bijections from H0sH^s_0 to HsH^{-s} or to L2L^2) into a sequence of independent linear systems with uniformly bounded condition numbers and leads to O(NpolylogN)\mathcal{O}(N \operatorname{polylog} N) solvers and eigenspace adapted Multiresolution Analysis (resulting in near linear complexity approximation of all eigensubspaces).Comment: 142 pages. 14 Figures. Presented at AFOSR (Aug 2016), DARPA (Sep 2016), IPAM (Apr 3, 2017), Hausdorff (April 13, 2017) and ICERM (June 5, 2017
    corecore