779 research outputs found

    Real-Time Wireless Sensor-Actuator Networks for Cyber-Physical Systems

    Get PDF
    A cyber-physical system (CPS) employs tight integration of, and coordination between computational, networking, and physical elements. Wireless sensor-actuator networks provide a new communication technology for a broad range of CPS applications such as process control, smart manufacturing, and data center management. Sensing and control in these systems need to meet stringent real-time performance requirements on communication latency in challenging environments. There have been limited results on real-time scheduling theory for wireless sensor-actuator networks. Real-time transmission scheduling and analysis for wireless sensor-actuator networks requires new methodologies to deal with unique characteristics of wireless communication. Furthermore, the performance of a wireless control involves intricate interactions between real-time communication and control. This thesis research tackles these challenges and make a series of contributions to the theory and system for wireless CPS. (1) We establish a new real-time scheduling theory for wireless sensor-actuator networks. (2) We develop a scheduling-control co-design approach for holistic optimization of control performance in a wireless control system. (3) We design and implement a wireless sensor-actuator network for CPS in data center power management. (4) We expand our research to develop scheduling algorithms and analyses for real-time parallel computing to support computation-intensive CPS

    Turning Futexes Inside-Out: Efficient and Deterministic User Space Synchronization Primitives for Real-Time Systems with IPCP

    Get PDF
    In Linux and other operating systems, futexes (fast user space mutexes) are the underlying synchronization primitives to implement POSIX synchronization mechanisms, such as blocking mutexes, condition variables, and semaphores. Futexes allow one to implement mutexes with excellent performance by avoiding system calls in the fast path. However, futexes are fundamentally limited to synchronization mechanisms that are expressible as atomic operations on 32-bit variables. At operating system kernel level, futex implementations require complex mechanisms to look up internal wait queues making them susceptible to determinism issues. In this paper, we present an alternative design for futexes by completely moving the complexity of wait queue management from the operating system kernel into user space, i. e. we turn futexes "inside out". The enabling mechanisms for "inside-out futexes" are an efficient implementation of the immediate priority ceiling protocol (IPCP) to achieve non-preemptive critical sections in user space, spinlocks for mutual exclusion, and interwoven services to suspend or wake up threads. The design allows us to implement common thread synchronization mechanisms in user space and to move determinism concerns out of the kernel while keeping the performance properties of futexes. The presented approach is suitable for multi-processor real-time systems with partitioned fixed-priority (P-FP) scheduling on each processor. We evaluate the approach with an implementation for mutexes and condition variables in a real-time operating system (RTOS). Experimental results on 32-bit ARM platforms show that the approach is feasible, and overheads are driven by low-level synchronization primitives

    libcppa - Designing an Actor Semantic for C++11

    Full text link
    Parallel hardware makes concurrency mandatory for efficient program execution. However, writing concurrent software is both challenging and error-prone. C++11 provides standard facilities for multiprogramming, such as atomic operations with acquire/release semantics and RAII mutex locking, but these primitives remain too low-level. Using them both correctly and efficiently still requires expert knowledge and hand-crafting. The actor model replaces implicit communication by sharing with an explicit message passing mechanism. It applies to concurrency as well as distribution, and a lightweight actor model implementation that schedules all actors in a properly pre-dimensioned thread pool can outperform equivalent thread-based applications. However, the actor model did not enter the domain of native programming languages yet besides vendor-specific island solutions. With the open source library libcppa, we want to combine the ability to build reliable and distributed systems provided by the actor model with the performance and resource-efficiency of C++11.Comment: 10 page

    SICStus MT - A Multithreaded Execution Environment for SICStus Prolog

    Get PDF
    The development of intelligent software agents and other complex applications which continuously interact with their environments has been one of the reasons why explicit concurrency has become a necessity in a modern Prolog system today. Such applications need to perform several tasks which may be very different with respect to how they are implemented in Prolog. Performing these tasks simultaneously is very tedious without language support. This paper describes the design, implementation and evaluation of a prototype multithreaded execution environment for SICStus Prolog. The threads are dynamically managed using a small and compact set of Prolog primitives implemented in a portable way, requiring almost no support from the underlying operating system

    rDLB: A Novel Approach for Robust Dynamic Load Balancing of Scientific Applications with Parallel Independent Tasks

    Full text link
    Scientific applications often contain large and computationally intensive parallel loops. Dynamic loop self scheduling (DLS) is used to achieve a balanced load execution of such applications on high performance computing (HPC) systems. Large HPC systems are vulnerable to processors or node failures and perturbations in the availability of resources. Most self-scheduling approaches do not consider fault-tolerant scheduling or depend on failure or perturbation detection and react by rescheduling failed tasks. In this work, a robust dynamic load balancing (rDLB) approach is proposed for the robust self scheduling of independent tasks. The proposed approach is proactive and does not depend on failure or perturbation detection. The theoretical analysis of the proposed approach shows that it is linearly scalable and its cost decrease quadratically by increasing the system size. rDLB is integrated into an MPI DLS library to evaluate its performance experimentally with two computationally intensive scientific applications. Results show that rDLB enables the tolerance of up to (P minus one) processor failures, where P is the number of processors executing an application. In the presence of perturbations, rDLB boosted the robustness of DLS techniques up to 30 times and decreased application execution time up to 7 times compared to their counterparts without rDLB

    SiL: An Approach for Adjusting Applications to Heterogeneous Systems Under Perturbations

    Full text link
    Scientific applications consist of large and computationally-intensive loops. Dynamic loop scheduling (DLS) techniques are used to load balance the execution of such applications. Load imbalance can be caused by variations in loop iteration execution times due to problem, algorithmic, or systemic characteristics (also, perturbations). The following question motivates this work: "Given an application, a high-performance computing (HPC) system, and both their characteristics and interplay, which DLS technique will achieve improved performance under unpredictable perturbations?" Existing work only considers perturbations caused by variations in the HPC system delivered computational speeds. However, perturbations in available network bandwidth or latency are inevitable on production HPC systems. Simulator in the loop (SiL) is introduced, herein, as a new control-theoretic inspired approach to dynamically select DLS techniques that improve the performance of applications on heterogeneous HPC systems under perturbations. The present work examines the performance of six applications on a heterogeneous system under all above system perturbations. The SiL proof of concept is evaluated using simulation. The performance results confirm the initial hypothesis that no single DLS technique can deliver best performance in all scenarios, while the SiL-based DLS selection delivered improved application performance in most experiments

    A fine-grain time-sharing Time Warp system

    Get PDF
    Although Parallel Discrete Event Simulation (PDES) platforms relying on the Time Warp (optimistic) synchronization protocol already allow for exploiting parallelism, several techniques have been proposed to further favor performance. Among them we can mention optimized approaches for state restore, as well as techniques for load balancing or (dynamically) controlling the speculation degree, the latter being specifically targeted at reducing the incidence of causality errors leading to waste of computation. However, in state of the art Time Warp systems, events’ processing is not preemptable, which may prevent the possibility to promptly react to the injection of higher priority (say lower timestamp) events. Delaying the processing of these events may, in turn, give rise to higher incidence of incorrect speculation. In this article we present the design and realization of a fine-grain time-sharing Time Warp system, to be run on multi-core Linux machines, which makes systematic use of event preemption in order to dynamically reassign the CPU to higher priority events/tasks. Our proposal is based on a truly dual mode execution, application vs platform, which includes a timer-interrupt based support for bringing control back to platform mode for possible CPU reassignment according to very fine grain periods. The latter facility is offered by an ad-hoc timer-interrupt management module for Linux, which we release, together with the overall time-sharing support, within the open source ROOT-Sim platform. An experimental assessment based on the classical PHOLD benchmark and two real world models is presented, which shows how our proposal effectively leads to the reduction of the incidence of causality errors, as compared to traditional Time Warp, especially when running with higher degrees of parallelism

    Simplifying Embedded System Development Through Whole-Program Compilers

    Get PDF
    As embedded systems embrace ever more complicated microcontrollers, they present both new capability and new complexity. To simplify their development, some lessons of computer application development will translate with additional work. This thesis offers one such translation. It shows how whole-program compilers - those that broadly analyze a program\u27s entire source code - can achieve performance gains and remove faults in embedded system applications. In so doing, this yields a novel stackless threading system named UnStacked C. UnStacked C enables cooperative multithreading without the risk of stack overflows in embedded system applications. We also propose a novel preemption system called Lazy Preemption. Unstacked C with Lazy Preemption enables stackless preemptive multithreading in embedded systems. These remove the possibility of thread stack overflows, but also significantly reduces the memory required for multithreading in embedded system
    • …
    corecore