318 research outputs found

    Meeting Design Supporting Sustainability in Early Planning Practice: A Combination of ‘Hard and Soft’ Characteristics

    Get PDF
    While research on the sustainable built environment has acknowledged the need to integrate multidisciplinary perspectives in the early planning phases, few studies have focused on early-phase meetings and how these can support such co-creation of sustainability. In this study, a set of “characteristics” for collaborative meetings integrating multidisciplinary perspectives was tested in 16 meetings that took place in the early phase. An action research insider perspective was used, where a researcher was also the facilitator of these 16 meetings. The cases provide insights into the early-phase processes where the building industry can achieve sustainable impacts on the built environment. This was exemplified by two of the cases becoming demonstration projects in terms of sustainability. Empirical material was gathered through discussions and surveys with meeting participants and was analyzed through the lens of the meeting design characteristics. The findings show that processes with ‘soft’ interpersonal characteristics (expressing emotions, tempo change during dialogue, engaging in social interaction, moving the body) support the development of a shared understanding of sustainability that integrates multidisciplinary perspectives. For larger groups and in digital meetings, a combination of ‘soft’ (interpersonal) and ‘hard’ (digital communication tools and platforms) characteristics were found to be supportive, especially when the meeting time was limited. This research suggests a revision of the design of multidisciplinary early-phase meetings towards including social, emotional, bodily, and collaborative exercises supported by digital tools

    International Competition on Graph Counting Algorithms 2023

    Full text link
    This paper reports on the details of the International Competition on Graph Counting Algorithms (ICGCA) held in 2023. The graph counting problem is to count the subgraphs satisfying specified constraints on a given graph. The problem belongs to #P-complete, a computationally tough class. Since many essential systems in modern society, e.g., infrastructure networks, are often represented as graphs, graph counting algorithms are a key technology to efficiently scan all the subgraphs representing the feasible states of the system. In the ICGCA, contestants were asked to count the paths on a graph under a length constraint. The benchmark set included 150 challenging instances, emphasizing graphs resembling infrastructure networks. Eleven solvers were submitted and ranked by the number of benchmarks correctly solved within a time limit. The winning solver, TLDC, was designed based on three fundamental approaches: backtracking search, dynamic programming, and model counting or #SAT (a counting version of Boolean satisfiability). Detailed analyses show that each approach has its own strengths, and one approach is unlikely to dominate the others. The codes and papers of the participating solvers are available: https://afsa.jp/icgca/.Comment: https://afsa.jp/icgca

    Diabetic Retinopathy Detection Using Local Extrema Quantized Haralick Features with Long Short-Term Memory Network

    Get PDF
    Diabetic retinopathy is one of the leading diseases affecting eyes. Lack of early detection and treatment can lead to total blindness of the diseased eyes. Recently, numerous researchers have attempted producing automatic diabetic retinopathy detection techniques to supplement diagnosis and early treatment of diabetic retinopathy symptoms. In this manuscript, a new approach has been proposed. The proposed approach utilizes the feature extracted from the fundus image using a local extrema information with quantized Haralick features. The quantized features encode not only the textural Haralick features but also exploit the multiresolution information of numerous symptoms in diabetic retinopathy. Long Short-Term Memory network together with local extrema pattern provides a probabilistic approach to analyze each segment of the image with higher precision which helps to suppress false positive occurrences. The proposed approach analyzes the retina vasculature and hard-exudate symptoms of diabetic retinopathy on two different public datasets. The experimental results evaluated using performance matrices such as specificity, accuracy, and sensitivity reveal promising indices. Similarly, comparison with the related state-of-the-art researches highlights the validity of the proposed method. The proposed approach performs better than most of the researches used for comparison

    Machine Learning in Digital Signal Processing for Optical Transmission Systems

    Get PDF
    The future demand for digital information will exceed the capabilities of current optical communication systems, which are approaching their limits due to component and fiber intrinsic non-linear effects. Machine learning methods are promising to find new ways of leverage the available resources and to explore new solutions. Although, some of the machine learning methods such as adaptive non-linear filtering and probabilistic modeling are not novel in the field of telecommunication, enhanced powerful architecture designs together with increasing computing power make it possible to tackle more complex problems today. The methods presented in this work apply machine learning on optical communication systems with two main contributions. First, an unsupervised learning algorithm with embedded additive white Gaussian noise (AWGN) channel and appropriate power constraint is trained end-to-end, learning a geometric constellation shape for lowest bit-error rates over amplified and unamplified links. Second, supervised machine learning methods, especially deep neural networks with and without internal cyclical connections, are investigated to combat linear and non-linear inter-symbol interference (ISI) as well as colored noise effects introduced by the components and the fiber. On high-bandwidth coherent optical transmission setups their performances and complexities are experimentally evaluated and benchmarked against conventional digital signal processing (DSP) approaches. This thesis shows how machine learning can be applied to optical communication systems. In particular, it is demonstrated that machine learning is a viable designing and DSP tool to increase the capabilities of optical communication systems

    Modeling and Simulation of Heat Transfer Phenomena

    Get PDF

    Basin-scale runoff prediction: An Ensemble Kalman Filter framework based on global hydrometeorological data sets

    Get PDF
    In order to cope with the steady decline of the number of in situ gauges worldwide, there is a growing need for alternative methods to estimate runoff. We present an Ensemble Kalman Filter based approach that allows us to conclude on runoff for poorly or irregularly gauged basins. The approach focuses on the application of publicly available global hydrometeorological data sets for precipitation (GPCC, GPCP, CRU, UDEL), evapotranspiration (MODIS, FLUXNET, GLEAM, ERA interim, GLDAS), and water storage changes (GRACE, WGHM, GLDAS, MERRA LAND). Furthermore, runoff data from the GRDC and satellite altimetry derived estimates are used. We follow a least squares prediction that exploits the joint temporal and spatial auto- and cross-covariance structures of precipitation, evapotranspiration, water storage changes and runoff. We further consider time-dependent uncertainty estimates derived from all data sets. Our in-depth analysis comprises of 29 large river basins of different climate regions, with which runoff is predicted for a subset of 16 basins. Six configurations are analyzed: the Ensemble Kalman Filter (Smoother) and the hard (soft) Constrained Ensemble Kalman Filter (Smoother). Comparing the predictions to observed monthly runoff shows correlations larger than 0.5, percentage biases lower than ± 20%, and NSE-values larger than 0.5. A modified NSE-metric, stressing the difference to the mean annual cycle, shows an improvement of runoff predictions for 14 of the 16 basins. The proposed method is able to provide runoff estimates for nearly 100 poorly gauged basins covering an area of more than 11,500,000 km2 with a freshwater discharge, in volume, of more than 125,000 m3/s

    New architectures for very deep learning

    Get PDF
    Artificial Neural Networks are increasingly being used in complex real- world applications because many-layered (i.e., deep) architectures can now be trained on large quantities of data. However, training even deeper, and therefore more powerful networks, has hit a barrier due to fundamental limitations in the design of existing networks. This thesis develops new architectures that, for the first time, allow very deep networks to be optimized efficiently and reliably. Specifically, it addresses two key issues that hamper credit assignment in neural networks: cross-pattern interference and vanishing gradients. Cross- pattern interference leads to oscillations of the network’s weights that make training inefficient. The proposed Local Winner-Take-All networks reduce interference among computation units in the same layer through local competition. An in-depth analysis of locally competitive networks provides generalizable insights and reveals unifying properties that improve credit assignment. As network depth increases, vanishing gradients make a network’s outputs increasingly insensitive to the weights close to the inputs, causing the failure of gradient-based training. To overcome this limitation, the proposed Highway networks regulate information flow across layers through additional skip connections which are modulated by learned computation units. Their beneficial properties are extended to the sequential domain with Recurrent Highway Networks that gain from increased depth and learn complex sequential transitions without requiring more parameters

    Hierarchically organised genetic algorithm for fuzzy network synthesis

    Get PDF
    • 

    corecore