7,365 research outputs found

    Compiling vector pascal to the XeonPhi

    Get PDF
    Intel's XeonPhi is a highly parallel x86 architecture chip made by Intel. It has a number of novel features which make it a particularly challenging target for the compiler writer. This paper describes the techniques used to port the Glasgow Vector Pascal Compiler to this architecture and assess its performance by comparisons of the XeonPhi with 3 other machines running the same algorithms

    Parallel String Sample Sort

    Get PDF
    We discuss how string sorting algorithms can be parallelized on modern multi-core shared memory machines. As a synthesis of the best sequential string sorting algorithms and successful parallel sorting algorithms for atomic objects, we propose string sample sort. The algorithm makes effective use of the memory hierarchy, uses additional word level parallelism, and largely avoids branch mispredictions. Additionally, we parallelize variants of multikey quicksort and radix sort that are also useful in certain situations.Comment: 34 pages, 7 figures and 12 table

    Modula-2*: An extension of Modula-2 for highly parallel programs

    Get PDF
    Parallel programs should be machine-independent, i.e., independent of properties that are likely to differ from one parallel computer to the next. Extensions are described of Modula-2 for writing highly parallel, portable programs meeting these requirements. The extensions are: synchronous and asynchronous forms of forall statement; and control of the allocation of data to processors. Sample programs written with the extensions demonstrate the clarity of parallel programs when machine-dependent details are omitted. The principles of efficiently implementing the extensions on SIMD, MIMD, and MSIMD machines are discussed. The extensions are small enough to be integrated easily into other imperative languages

    Array languages and the N-body problem

    Get PDF
    This paper is a description of the contributions to the SICSA multicore challenge on many body planetary simulation made by a compiler group at the University of Glasgow. Our group is part of the Computer Vision and Graphics research group and we have for some years been developing array compilers because we think these are a good tool both for expressing graphics algorithms and for exploiting the parallelism that computer vision applications require. We shall describe experiments using two languages on two different platforms and we shall compare the performance of these with reference C implementations running on the same platforms. Finally we shall draw conclusions both about the viability of the array language approach as compared to other approaches used in the challenge and also about the strengths and weaknesses of the two, very different, processor architectures we used

    A compiler extension for parallelizing arrays automatically on the cell heterogeneous processor

    Get PDF
    This paper describes the approaches taken to extend an array programming language compiler using a Virtual SIMD Machine (VSM) model for parallelizing array operations on Cell Broadband Engine heterogeneous machine. This development is part of ongoing work at the University of Glasgow for developing array compilers that are beneficial for applications in many areas such as graphics, multimedia, image processing and scientific computation. Our extended compiler, which is built upon the VSM interface, eases the parallelization processes by allowing automatic parallelisation without the need for any annotations or process directives. The preliminary results demonstrate significant improvement especially on data-intensive applications

    Engineering Parallel String Sorting

    Get PDF
    We discuss how string sorting algorithms can be parallelized on modern multi-core shared memory machines. As a synthesis of the best sequential string sorting algorithms and successful parallel sorting algorithms for atomic objects, we first propose string sample sort. The algorithm makes effective use of the memory hierarchy, uses additional word level parallelism, and largely avoids branch mispredictions. Then we focus on NUMA architectures, and develop parallel multiway LCP-merge and -mergesort to reduce the number of random memory accesses to remote nodes. Additionally, we parallelize variants of multikey quicksort and radix sort that are also useful in certain situations. Comprehensive experiments on five current multi-core platforms are then reported and discussed. The experiments show that our implementations scale very well on real-world inputs and modern machines.Comment: 46 pages, extension of "Parallel String Sample Sort" arXiv:1305.115
    corecore