9 research outputs found

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version

    Space-based Global Maritime Surveillance. Part I: Satellite Technologies

    Full text link
    Maritime surveillance (MS) is crucial for search and rescue operations, fishery monitoring, pollution control, law enforcement, migration monitoring, and national security policies. Since the early days of seafaring, MS has been a critical task for providing security in human coexistence. Several generations of sensors providing detailed maritime information have become available for large offshore areas in real time: maritime radar sensors in the 1950s and the automatic identification system (AIS) in the 1990s among them. However, ground-based maritime radars and AIS data do not always provide a comprehensive and seamless coverage of the entire maritime space. Therefore, the exploitation of space-based sensor technologies installed on satellites orbiting around the Earth, such as satellite AIS data, synthetic aperture radar, optical sensors, and global navigation satellite systems reflectometry, becomes crucial for MS and to complement the existing terrestrial technologies. In the first part of this work, we provide an overview of the main available space-based sensors technologies and present the advantages and limitations of each technology in the scope of MS. The second part, related to artificial intelligence, signal processing and data fusion techniques, is provided in a companion paper, titled: "Space-based Global Maritime Surveillance. Part II: Artificial Intelligence and Data Fusion Techniques" [1].Comment: This paper has been submitted to IEEE Aerospace and Electronic Systems Magazin

    Information retrieval from spaceborne GNSS Reflectometry observations using physics- and learning-based techniques

    Get PDF
    This dissertation proposes a learning-based, physics-aware soil moisture (SM) retrieval algorithm for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) mission. The proposed methodology has been built upon the literature review, analyses, and findings from a number of published studies throughout the dissertation research. Namely, a Sig- nals of Opportunity Coherent Bistatic scattering model (SCoBi) has been first developed at MSU and then its simulator has been open-sourced. Simulated GNSS-Reflectometry (GNSS-R) analyses have been conducted by using SCoBi. Significant findings have been noted such that (1) Although the dominance of either the coherent reflections or incoher- ent scattering over land is a debate, we demonstrated that coherent reflections are stronger for flat and smooth surfaces covered by low-to-moderate vegetation canopy; (2) The influ- ence of several land geophysical parameters such as SM, vegetation water content (VWC), and surface roughness on the bistatic reflectivity was quantified, the dynamic ranges of reflectivity changes due to SM and VWC are much higher than the changes due to the surface roughness. Such findings of these analyses, combined with a comprehensive lit- erature survey, have led to the present inversion algorithm: Physics- and learning-based retrieval of soil moisture information from space-borne GNSS-R measurements that are taken by NASA’s CYGNSS mission. The study is the first work that proposes a machine learning-based, non-parametric, and non-linear regression algorithm for CYGNSS-based soil moisture estimation. The results over point-scale soil moisture observations demon- strate promising performance for applicability to large scales. Potential future work will be extension of the methodology to global scales by training the model with larger and diverse data sets

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): Mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a "dynamic mapper" of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (&lt;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance

    Contributions to land, sea, and sea ice remote sensing using GNSS-reflectometry

    Get PDF
    This PhD thesis researches the use of passive remote sensing techniques using signals transmitted from the navigation satellites (GNSS) in order to retrieve different geophysical parameters. The thesis consists of two different parts without taking into account the introduction, the state of the art and the conclusions. The first part analyzes the Interference Pattern Technique (IPT), which was previously used in another PhD thesis, and proposes some key improvements. First, the addition of horizontal polarization to the existing vertical polarization is proposed. Then, the retrieval of soil moisture is studied using the horizontal polarization only and combining both polarizations to correct for the surface roughness effects. It is also demonstrated that the phase difference between the two interference patterns is directly related to soil moisture content. A field campaign was conducted in Australia to test empirically all the theoretical developments and algorithms. Secondly, the possibility of measuring Significant Wave Height (SWH) and Mean Sea Surface Level (MSSL) using the IPT is studied. A three month field campaign over coastal sea is devoted to that study. The SWH retrieval is a new estimation algorithm based on measuring the point where the interference pattern loses coherence. The MSSL retrieval is based on the estimation of the IPT oscillation frequency, testing different spectral estimators to improve the accuracy. Since the IPT is limited in coverage due to its static requirements, the research conducted in this thesis migrated to scatterometric GNSS-R techniques. The main goal that migration was to increase coverage of the different GNSS-R instruments. Therefore, the second part of this thesis analyzes the applicability of a scatterometric technique from different platforms: ground-based (mobile and fixed), airborne, and spaceborne. The ground-based still platforms have allowed to develop a soil moisture retrieval algorithm. The ground-based moving platforms have extended the validity of that algorithm. Airborne platforms have been used to study the reflected electric field statistics when the surface reflecting surface is varying (smooth or rough land, and sea). They have also been used to develop different algorithms to measure the coherent and incoherent scattered components depending on the data structure (real-data or complex data). Coherent reflectivity measured from airborne platforms has been compared to other techniques such microwave radiometry, which is highly used in the soil moisture retrieval from spaceborne sensors, and other sensors using optical, multispectral and thermal frequency bands. These relationships between microwave radiometry and GNSS-R measurements suggests the potential synergy of both techniques. A sea ice detection algorithm is also developed using scatterometric GNSS-R data from the UK TDS-1 mission. This algorithm is based on measuring the degree of coherence of the reflected waveform. Finally, a field campaign was conducted to study the effect of vegetation on the GNSS signals that pass through it in order to take into account and correct the effect of vegetation in the GNSS-R data and in the soil moisture retrieval algorithms.Aquesta tesi doctoral aprofundeix en el coneixement de les tècniques de teledetecció passives utilitzant senyals emesos pels satèl·lits de navegació (GNSS) amb l'objectiu de recuperar diferents paràmetres geofísics del terreny. La tesi conté dues parts ben diferenciades a banda de la introducció, estat de l'art i conclusions. La primera part analitza la tècnica coneguda com a patró d'interferències, utilitzada prèviament en una altra tesi doctoral, i proposa certes millores per la seva aplicabilitat. En primer lloc es decideix afegir polarització horitzontal a la ja existent polarització vertical, i s'estudia la recuperació d'humitat del sòl utilitzant només polarització horitzontal i combinant les dues polaritzacions per corregir els efectes de la rugositat del terreny. A continuació es demostra que la mesura de desfasament entre els dos patrons d'interferència està directament relacionada amb la humitat del terreny. Es va realitzar una campanya de mesures a Austràlia per provar empíricament tots els desenvolupaments teòrics i algorismes proposats. En segon lloc s'analitza l'aplicabilitat del patró d'interferències en la mesura de l'altura de les onades (SWH) i del nivell del mar (MSSL), tots dos de forma precisa. L'estimació de l'alçada de les onades és un procés totalment nou basat en mesurar el punt on el patró d'interferències perd la coherència. L'estimació del nivell del mar es basa en l'anàlisi espectral del patró d'interferències provant diferents estimadors espectrals. Atès que la tècnica del patró d'interferència està limitada en cobertura per les seves característiques estàtiques, la investigació duta a terme en aquesta tesi doctoral va migrar cap a tècniques GNSS-R escateromètriques. El principal objectiu a assolir va ser el d'augmentar la cobertura dels diferents instruments GNSS-R de mesura. En conseqüència, la segona part d'aquesta tesi analitza l'aplicabilitat d'aquestes tècniques des de diferents plataformes terrestres (mòbils i fixes), aerotransportades i satèl·lit. Les plataformes terrestres fixes han permès derivar algoritmes de recuperació d'humitat i les mòbils estendre la validació d'aquests. Les plataformes aerotransportades s'han utilitzat per mirar l'estadística del camp elèctric reflectit quan la superfície on es reflecteixen els senyals GNSS va variant (terra plana o terra rugosa, i mar). També han servit per desenvolupar diferents algorismes amb l'objectiu de determinar les components coherent i incoherent del senyal reflectit. De la mateixa manera, dades de reflectivitat coherent mesurades des d'aquestes plataformes han estat comparades amb altres tècniques de teledetecció passiva com la radiometria de microones, altament utilitzada en la mesura d'humitat de terreny, i altres sensors òptics, multi-espectrals, i tèrmics. Aquests resultats han permès suggerir la possible sinergia de dades d'ambdues tecnologies. Un algorisme per detectar la presència de gel sobre el mar també ha estat desenvolupat mitjançant l'ús de dades GNSS-R escateromètriques satel·litals de la missió UK TDS-1. Aquest algorisme es basa en mesurar el grau de coherència de la forma d'ona reflectida. Finalment, s'ha realitzat un estudi de l'efecte de la vegetació en els senyals GNSS que la travessen, per tal de poder corregir aquest efecte en els algoritmes de recuperació d'humitat del terreny

    Improving Flood Detection and Monitoring through Remote Sensing

    Get PDF
    As climate-change- and human-induced floods inflict increasing costs upon the planet, both in terms of lives and environmental damage, flood monitoring tools derived from remote sensing platforms have undergone improvements in their performance and capabilities in terms of spectral, spatial and temporal extents and resolutions. Such improvements raise new challenges connected to data analysis and interpretation, in terms of, e.g., effectively discerning the presence of floodwaters in different land-cover types and environmental conditions or refining the accuracy of detection algorithms. In this sense, high expectations are placed on new methods that integrate information obtained from multiple techniques, platforms, sensors, bands and acquisition times. Moreover, the assessment of such techniques strongly benefits from collaboration with hydrological and/or hydraulic modeling of the evolution of flood events. The aim of this Special Issue is to provide an overview of recent advancements in the state of the art of flood monitoring methods and techniques derived from remotely sensed data

    Synergistic optical and microwave remote sensing approaches for soil moisture mapping at high resolution

    Get PDF
    Aplicat embargament des de la data de defensa fins al dia 1 d'octubre de 2022Soil moisture is an essential climate variable that plays a crucial role linking the Earth’s water, energy, and carbon cycles. It is responsible for the water exchange between the Earth’s surface and the atmosphere, and provides key information about soil evaporation, plant transpiration, and the allocation of precipitation into runoff, surface flow and infiltration. Therefore, an accurate estimation of soil moisture is needed to enhance our current climate and meteorological forecasting skills, and to improve our current understanding of the hydrological cycle and its extremes (e.g., droughts and floods). L-band Microwave passive and active sensors have been used during the last decades to estimate soil moisture, since there is a strong relationship between this variable and the soil dielectric properties. Currently, there are two operational L-band missions specifically devoted to globally measure soil moisture: the ESA’s Soil Moisture and the Ocean Salinity (SMOS), launched in November 2009; and the NASA’s Soil Moisture Active Passive (SMAP), launched in January 2015. The spatial resolution of the SMOS and SMAP radiometers, in the order of tens of kilometers (~40 km), is adequate for global applications. However, to fulfill the needs of a growing number of applications at local or regional scale, higher spatial detail (< 1 km) is required. To bridge this gap and improve the spatial resolution of the soil moisture maps, a variety of spatial enhancement or spatial (sub-pixel) disaggregation approaches have been proposed. This Ph.D. Thesis focuses on the study of the Earth’s surface soil moisture from remotely sensed observations. This work includes the implementation of several soil moisture retrieval techniques and the development, implementation, validation and comparison of different spatial enhancement or downscaling techniques, applied at local, regional, and continental scale. To meet these objectives, synergies between several active/passive microwave sensors (SMOS, SMAP and Sentinel-1) and optical/thermal sensors (MODIS) have been explored. The results are presented as follows: - Spatially consistent downscaling approach for SMOS using an adaptive moving window A passive microwave/optical downscaling algorithm for SMOS is proposed to obtain fine-scale soil moisture maps (1 km) from the native resolution (~40 km) of the instrument. This algorithm introduces the concept of a shape-adaptive window as a central improvement of the disaggregation technique presented by Piles et al. (2014), allowing its application at continental scales. - Assessment of multi-scale SMOS and SMAP soil moisture products across the Iberian Peninsula The temporal and spatial characteristics of SMOS and SMAP soil moisture products at coarse- and fine-scales are assessed in order to learn about their distinct features and the rationale behind them, tracing back to the physical assumptions they are based upon. - Impact of incidence angle diversity on soil moisture retrievals at coarse and fine scales An incidence angle (32.5°, 42.5° and 52.5°)-adaptive calibration of radiative transfer effective parameters single scattering albedo and soil roughness has been carried out, highlighting the importance of such parameterization to accurately estimate soil moisture at coarse-resolution. Then, these parameterizations are used to examine the potential application of a physically-based active-passive downscaling approach to upcoming microwave missions, namely CIMR, ROSE-L and Sentinel-1 Next Generation. Soil moisture maps obtained for the Iberian Peninsula at the three different angles, and at coarse and fine scales are inter-compared using in situ measurements and model data as benchmarks.La humedad del suelo es una variable climática esencial que juega un papel crucial en la relación de los ciclos del agua, la energía y el carbono de la Tierra. Es responsable del intercambio de agua entre la superficie de la Tierra y la atmósfera, y proporciona información crucial sobre la evaporación del suelo, la transpiración de las plantas y la distribución de la precipitación en escorrentía, flujo superficial e infiltración. Por lo tanto, es necesaria una estimación precisa de la humedad del suelo para mejorar las predicciones climáticas y meteorológicas, y comprender mejor el ciclo hidrológico y sus extremos (v.g., sequías e inundaciones). Los sensores pasivos y activos en banda L se han usado durante las últimas décadas para estimar la humedad del suelo debido a la relación directa que existe entre esta variable y las propiedades dieléctricas del suelo. Actualmente, hay dos misiones operativas en banda L específicamente dedicadas a medir la humedad del suelo a escala global: la misión Soil Moisture and Ocean Salinity (SMOS) de la ESA, lanzada en noviembre de 2009; y la misión Soil Moisture Active Passive (SMAP) de la NASA, lanzada en enero de 2015. La resolución espacial de los radiómetros SMOS y SMAP, del orden de unas decenas de kilómetros (~40 km), es adecuada para aplicaciones a escala global. Sin embargo, para satisfacer las necesidades de un número creciente de aplicaciones a escala local o regional, se requiere más detalle espacial (<1 km). Para solventar esta limitación y mejorar la resolución espacial de los mapas de humedad, se han propuesto diferentes técnicas de mejora o desagregación espacial. Esta Tesis se centra en el estudio de la humedad de la superficie terrestre a partir de datos obtenidos a través de teledetección. Este trabajo incluye la implementación de distintos algoritmos de recuperación de la humedad del suelo y el desarrollo, implementación, validación y comparación de distintas técnicas de desagregación, aplicadas a escala local, regional y continental. Para cumplir estos objetivos, se han explorado sinergias entre diferentes sensores de microondas activos/pasivos (SMOS, SMAP y Sentinel-1) y sensores ópticos/térmicos. Los resultados se presentan de la siguiente manera: - Técnica de desagregación espacialmente consistente, basada en una ventana móvil adaptativa, aplicada a los datos SMOS Se propone un algoritmo de desagregación del píxel basado en datos obtenidos de medidas radiométricas de microondas en banda L y datos ópticos, para mejorar la resolución espacial de los mapas de humedad del suelo desde la resolución nativa del instrumento (~40 km) hasta resoluciones de 1 km. El algoritmo introduce el concepto de una ventana de contorno adaptativo, como mejora principal sobre la técnica de desagregación presentada en Piles et al. (2014), permitiendo su implementación a escala continental. - Análisis multiescalar de productos de humedad del suelo SMAP y SMOS sobre la Península Ibérica Se han evaluado las características temporales y espaciales de distintos productos de humedad del suelo SMOS y SMAP, a baja y a alta resolución, para conocer sus características distintivas y comprender las razones de sus diferencias. Para ello, ha sido necesario rastrear los supuestos físicos en los que se basan. - Impacto del ángulo de incidencia en la recuperación de la humedad del suelo a baja y a alta resolución Se ha llevado a cabo una calibración adaptada al ángulo de incidencia (32.5°, 42.5° y 52.5°) de los parámetros efectivos, albedo de dispersión simple y rugosidad del suelo, descritos en el modelo de transferencia radiativa � − �, incidiendo en la importancia de esta parametrización para estimar la humedad del suelo de forma precisa a baja resolución. El resultado de las mismas se ha utilizado para estudiar la potencial aplicación de un algoritmo activo/pasivo de desagregación basado en la física para las próximas misiones de microondas, llamadas CIMR, ROSE-L y Sentinel-1 Next Generation. Los mapas de humedad recuperados a los tres ángulos de incidencia, tanto a baja como a alta resolución, se han obtenido para la Península Ibérica y se han comparado entre ellos usando como referencia mediciones de humedad in situ.Postprint (published version

    Processing of Raw GNSS Reflectometry Data From TDS-1 in a Backscattering Configuration

    No full text
    Global navigation satellite system reflectometry (GNSS-R) has found many applications in the field of Earth observation including ocean wind-speed detection, ice altimetry, soil moisture monitoring, and more. The main focus of GNSS-R research to date has been on forward-scattered reflections, but theoretical work has proposed a backscattering regime and associated new application opportunities, including marine target detection. This article discusses the methods and results of processing the U.K. TechDemoSat-1 raw data collections in a backscattering regime for the first time, with initial results from sea ice datasets presented. The research has also identified a key problem with the backscatter method-for certain geometries the power from the specular point (forward scattered) may contaminate the data. The theory behind this and a method for predicting such occurrences is also discussed
    corecore