25,191 research outputs found

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today

    A new method for texture mapping point-based models

    Get PDF
    In recent years, point-sampled geometry is becoming ubiquitous in graphics and geometric information processing. From a computer graphics point of view, the first major challenge in point-based geometry is to render high quality realistic images. A commonly used technique in realistic rendering is texture mapping, which essentially adds surface and/or material property detail in the final stages of rendering the image. The primary focus of the research reported in this thesis is to find suitable solutions to directly map one or more textures onto the surface of geometry represented by points without explicitly converting the surface to polygon mesh or to another geometric surface representation. Parameterization is the most important step required for adding texture onto the surfaces of objects. In this thesis, a global parameterization method is developed by using level set methods to evolve the concerned surface to a surface with implied parameterization, say a sphere. By tracking the point samples to their final destinations on the sphere, a polar coordinate is assigned to every point in the original model. The user then chooses a few anchor points that map into one or more texture images to yield a simple and flexible procedure to map texture images onto the surface of a point-based model. The method has been implemented using MATLAB and C++ and tested on a number of point-based model

    Dynamic Adaptive Point Cloud Streaming

    Full text link
    High-quality point clouds have recently gained interest as an emerging form of representing immersive 3D graphics. Unfortunately, these 3D media are bulky and severely bandwidth intensive, which makes it difficult for streaming to resource-limited and mobile devices. This has called researchers to propose efficient and adaptive approaches for streaming of high-quality point clouds. In this paper, we run a pilot study towards dynamic adaptive point cloud streaming, and extend the concept of dynamic adaptive streaming over HTTP (DASH) towards DASH-PC, a dynamic adaptive bandwidth-efficient and view-aware point cloud streaming system. DASH-PC can tackle the huge bandwidth demands of dense point cloud streaming while at the same time can semantically link to human visual acuity to maintain high visual quality when needed. In order to describe the various quality representations, we propose multiple thinning approaches to spatially sub-sample point clouds in the 3D space, and design a DASH Media Presentation Description manifest specific for point cloud streaming. Our initial evaluations show that we can achieve significant bandwidth and performance improvement on dense point cloud streaming with minor negative quality impacts compared to the baseline scenario when no adaptations is applied.Comment: 6 pages, 23rd ACM Packet Video (PV'18) Workshop, June 12--15, 2018, Amsterdam, Netherland

    Image Sampling with Quasicrystals

    Get PDF
    We investigate the use of quasicrystals in image sampling. Quasicrystals produce space-filling, non-periodic point sets that are uniformly discrete and relatively dense, thereby ensuring the sample sites are evenly spread out throughout the sampled image. Their self-similar structure can be attractive for creating sampling patterns endowed with a decorative symmetry. We present a brief general overview of the algebraic theory of cut-and-project quasicrystals based on the geometry of the golden ratio. To assess the practical utility of quasicrystal sampling, we evaluate the visual effects of a variety of non-adaptive image sampling strategies on photorealistic image reconstruction and non-photorealistic image rendering used in multiresolution image representations. For computer visualization of point sets used in image sampling, we introduce a mosaic rendering technique.Comment: For a full resolution version of this paper, along with supplementary materials, please visit at http://www.Eyemaginary.com/Portfolio/Publications.htm

    Interactive inspection of complex multi-object industrial assemblies

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1016/j.cad.2016.06.005The use of virtual prototypes and digital models containing thousands of individual objects is commonplace in complex industrial applications like the cooperative design of huge ships. Designers are interested in selecting and editing specific sets of objects during the interactive inspection sessions. This is however not supported by standard visualization systems for huge models. In this paper we discuss in detail the concept of rendering front in multiresolution trees, their properties and the algorithms that construct the hierarchy and efficiently render it, applied to very complex CAD models, so that the model structure and the identities of objects are preserved. We also propose an algorithm for the interactive inspection of huge models which uses a rendering budget and supports selection of individual objects and sets of objects, displacement of the selected objects and real-time collision detection during these displacements. Our solution–based on the analysis of several existing view-dependent visualization schemes–uses a Hybrid Multiresolution Tree that mixes layers of exact geometry, simplified models and impostors, together with a time-critical, view-dependent algorithm and a Constrained Front. The algorithm has been successfully tested in real industrial environments; the models involved are presented and discussed in the paper.Peer ReviewedPostprint (author's final draft
    corecore