586 research outputs found

    Building a Data Set over 12 Globally Distributed Sites to Support the Development of Agriculture Monitoring Applications with Sentinel-2

    Get PDF
    Developing better agricultural monitoring capabilities based on Earth Observation data is critical for strengthening food production information and market transparency. The Sentinel-2 mission has the optimal capacity for regional to global agriculture monitoring in terms of resolution (10–20 meter), revisit frequency (five days) and coverage (global). In this context, the European Space Agency launched in 2014 the “Sentinel­2 for Agriculture” project, which aims to prepare the exploitation of Sentinel-2 data for agriculture monitoring through the development of open source processing chains for relevant products. The project generated an unprecedented data set, made of “Sentinel-2 like” time series and in situ data acquired in 2013 over 12 globally distributed sites. Earth Observation time series were mostly built on the SPOT4 (Take 5) data set, which was specifically designed to simulate Sentinel-2. They also included Landsat 8 and RapidEye imagery as complementary data sources. Images were pre-processed to Level 2A and the quality of the resulting time series was assessed. In situ data about cropland, crop type and biophysical variables were shared by site managers, most of them belonging to the “Joint Experiment for Crop Assessment and Monitoring” network. This data set allowed testing and comparing across sites the methodologies that will be at the core of the future “Sentinel­2 for Agriculture” system.Instituto de Clima y AguaFil: Bontemps, Sophie. UniversitĂ© Catholique de Louvain. Earth and Life Institute; BĂ©lgicaFil: Arias, Marcela. Universite de Toulose - Le Mirail. Centre d’Etudes Spatiales de la BIOsphĂšre; FranciaFil: Cara, Cosmin. CS Romania S.A.; RumaniaFil: Dedieu, GĂ©rard. Universite de Toulose - Le Mirail. Centre d’Etudes Spatiales de la BIOsphĂšre; FranciaFil: Guzzonato, Eric. CS SystĂšmes d’Information; FranciaFil: Hagolle, Olivier. Universite de Toulose - Le Mirail. Centre d’Etudes Spatiales de la BIOsphĂšre; FranciaFil: Inglada, Jordi. Universite de Toulose - Le Mirail. Centre d’Etudes Spatiales de la BIOsphĂšre; FranciaFil: Matton, Nicolas. UniversitĂ© Catholique de Louvain. Earth and Life Institute; BĂ©lgicaFil: Morin, David. Universite de Toulose - Le Mirail. Centre d’Etudes Spatiales de la BIOsphĂšre; FranciaFil: Popescu, Ramona. CS Romania S.A.; RumaniaFil: Rabaute, Thierry. CS SystĂšmes d’Information; FranciaFil: Savinaud, Mickael. CS SystĂšmes d’Information; FranciaFil: Sepulcre, Guadalupe. UniversitĂ© Catholique de Louvain. Earth and Life Institute; BĂ©lgicaFil: Valero, Silvia. Universite de Toulose - Le Mirail. Centre d’Etudes Spatiales de la BIOsphĂšre; FranciaFil: Ahmad, Ijaz. Pakistan Space and Upper Atmosphere Research Commission. Space Applications Research Complex. National Agriculture Information Center Directorate; PakistĂĄnFil: BĂ©guĂ©, AgnĂšs. Centre de CoopĂ©ration Internationale en Recherche Agronomique pour le DĂ©velopperment; FranciaFil: Wu, Bingfang. Chinese Academy of Sciences. Institute of Remote Sensing and Digital Earth; RepĂșblica de ChinaFil: De Abelleyra, Diego. Instituto Nacional de TecnologĂ­a Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Diarra, Alhousseine. UniversitĂ© Cadi Ayyad. FacultĂ© des Sciences Semlalia; MarruecosFil: Dupuy, StĂ©phane. Centre de CoopĂ©ration Internationale en Recherche Agronomique pour le DĂ©velopperment; FranciaFil: French, Andrew. United States Department of Agriculture. Agricultural Research Service. Arid Land Agricultural Research Center; ArgentinaFil: Akhtar, Ibrar ul Hassan. Pakistan Space and Upper Atmosphere Research Commission. Space Applications Research Complex. National Agriculture Information Center Directorate; PakistĂĄnFil: Kussul, Nataliia. National Academy of Sciences of Ukraine. Space Research Institute and State Space Agency of Ukraine; UcraniaFil: Lebourgeois, Valentine. Centre de CoopĂ©ration Internationale en Recherche Agronomique pour le DĂ©velopperment; FranciaFil: Le Page, Michel. UniversitĂ© Cadi Ayyad. FacultĂ© des Sciences Semlalia. Laboratoire Mixte International TREMA; Marruecos. Universite de Toulose - Le Mirail. Centre d’Etudes Spatiales de la BIOsphĂšre; FranciaFil: Newby, Terrence. Agricultural Research Council; SudĂĄfricaFil: Savin, Igor. V.V. Dokuchaev Soil Science Institute; RusiaFil: VerĂłn, Santiago RamĂłn. Instituto Nacional de TecnologĂ­a Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Koetz, Benjamin. European Space Agency. European Space Research Institute; ItaliaFil: Defourny, Pierre. UniversitĂ© Catholique de Louvain. Earth and Life Institute; BĂ©lgic

    Comparative Genomic Analysis of 31 Phytophthora Genomes Reveals Genome Plasticity and Horizontal Gene Transfer

    Get PDF
    Phytophthora species are oomycete plant pathogens that cause great economic and ecological impacts. The Phytophthora genus includes over 180 known species, infecting a wide range of plant hosts, including crops, trees, and ornamentals. We sequenced the genomes of 31 individual Phytophthora species and 24 individual transcriptomes to study genetic relationships across the genus. De novo genome assemblies revealed variation in genome sizes, numbers of predicted genes, and in repetitive element content across the Phytophthora genus. A genus-wide comparison evaluated orthologous groups of genes. Predicted effector gene counts varied across Phytophthora species by effector family, genome size, and plant host range. Predicted numbers of apoplastic effectors increased as the host range of Phytophthora species increased. Predicted numbers of cytoplasmic effectors also increased with host range but leveled off or decreased in Phytophthora species that have enormous host ranges. With extensive sequencing across the Phytophthora genus, we now have the genomic resources to evaluate horizontal gene transfer events across the oomycetes. Using a machine-learning approach to identify horizontally transferred genes with bacterial or fungal origin, we identified 44 candidates over 36 Phytophthora species genomes. Phylogenetic reconstruction indicates that the transfers of most of these 44 candidates happened in parallel to major advances in the evolution of the oomycetes and Phytophthora spp. We conclude that the 31 genomes presented here are essential for investigating genus-wide genomic associations in genus Phytophthora. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license

    Location, biophysical and agronomic parameters for croplands in northern Ghana

    Get PDF
    Smallholder agriculture is the bedrock of the food production system in sub-Saharan Africa. Yields in Africa are significantly below potentially attainable yields for a number of reasons, and they are particularly vulnerable to climate change impacts. Monitoring of these highly heterogeneous landscapes is needed to respond to farmer needs, develop an appropriate policy and ensure food security, and Earth observation (EO) must be part of these efforts, but there is a lack of ground data for developing and testing EO methods in western Africa, and in this paper, we present data on (i) crop locations, (ii) biophysical parameters and (iii) crop yield, and biomass was collected in 2020 and 2021 in Ghana and is reported in this paper. In 2020, crop type was surveyed in more than 1800 fields in three different agroecological zones across Ghana (the Guinea Savannah, Transition and Deciduous zones). In 2021, a smaller number of fields were surveyed in the Guinea Savannah zone, and additionally, repeated measurements of leaf area index (LAI) and leaf chlorophyll concentration were made on a set of 56 maize fields. Yield and biomass were also sampled at harvesting. LAI in the sampled fields ranged from 0.1 to 5.24 m2 m−2, whereas leaf chlorophyll concentration varied between 6.1 and 60.3 ”g cm−2. Yield varied between 190 and 4580 kg ha−1, with an important within-field variability (average per-field standard deviation 381 kg ha−1). The data are used in this paper to (i) evaluate the Digital Earth Africa 2019 cropland masks, where 61 % of sampled 2020/21 cropland is flagged as cropland by the data set, (ii) develop and test an LAI retrieval method from Earth observation Planet surface reflectance data (validation correlation coefficient R=0.49, root mean square error (RMSE) 0.44 m2 m−2), (iii) create a maize classification data set for Ghana for 2021 (overall accuracy within the region tested: 0.84), and (iv) explore the relationship between maximum LAI and crop yield using a linear model (correlation coefficient R=0.66 and R=0.53 for in situ and Planet-derived LAI, respectively). The data set, made available here within the context of the Group on Earth Observations Global Agricultural Monitoring (GEOGLAM) initiative, is an important contribution to understanding crop evolution and distribution in smallholder farming systems and will be useful for researchers developing/validating methods to monitor these systems using Earth observation data. The data described in this paper are available from https://doi.org/10.5281/zenodo.6632083 (Gomez-Dans et al., 2022)

    ELULC-10, a 10 m European land use and land cover map using Sentinel and landsat data in Google Earth Engine

    Get PDF
    Land Use/Land Cover (LULC) maps can be effectively produced by cost-effective and frequent satellite observations. Powerful cloud computing platforms are emerging as a growing trend in the high utilization of freely accessible remotely sensed data for LULC mapping over large-scale regions using big geodata. This study proposes a workflow to generate a 10 m LULC map of Europe with nine classes, ELULC-10, using European Sentinel-1/-2 and Landsat-8 images, as well as the LUCAS reference samples. More than 200 K and 300 K of in situ surveys and images, respectively, were employed as inputs in the Google Earth Engine (GEE) cloud computing platform to perform classification by an object-based segmentation algorithm and an Artificial Neural Network (ANN). A novel ANN-based data preparation was also presented to remove noisy reference samples from the LUCAS dataset. Additionally, the map was improved using several rule-based post-processing steps. The overall accuracy and kappa coefficient of 2021 ELULC-10 were 95.38% and 0.94, respectively. A detailed report of the classification accuracies was also provided, demonstrating an accurate classification of different classes, such as Woodland and Cropland. Furthermore, rule-based post processing improved LULC class identifications when compared with current studies. The workflow could also supply seasonal, yearly, and change maps considering the proposed integration of complex machine learning algorithms and large satellite and survey data.Peer ReviewedPostprint (published version

    Landcover and crop type classification with intra-annual times series of sentinel-2 and machine learning at central Portugal

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesLand cover and crop type mapping have benefited from a daily revisiting period of sensors such as MODIS, SPOT-VGT, NOAA-AVHRR that contains long time-series archive. However, they have low accuracy in an Area of Interest (ROI) due to their coarse spatial resolution (i.e., pixel size > 250m). The Copernicus Sentinel-2 mission from the European Spatial Agency (ESA) provides free data access for Sentinel 2-A(S2a) and B (S2b). This satellite constellation guarantees a high temporal (5-day revisit cycle) and high spatial resolution (10m), allowing frequent updates on land cover products through supervised classification. Nevertheless, this requires training samples that are traditionally collected manually via fieldwork or image interpretation. This thesis aims to implement an automatic workflow to classify land cover and crop types at 10m resolution in central Portugal using existing databases, intra-annual time series of S2a and S2b, and Random Forest, a supervised machine learning algorithm. The agricultural classes such as temporary and permanent crops as well as agricultural grasslands were extracted from the Portuguese Land Parcel Identification System (LPIS) of the Instituto de Financiamento da Agricultura e Pescas (IFAP); land cover classes like urban, forest and water were trained from the Carta de Ocupação do Solo (COS) that is the national Land Use and Land Cover (LULC) map of Portugal; and lastly, the burned areas are identified from the corresponding national map of the Instituto da Conservação da Natureza e das Florestas (ICNF). Also, a set of preprocessing steps were defined based on the implementation of ancillary data allowing to avoid the inclusion of mislabeled pixels to the classifier. Mislabeling of pixels can occur due to errors in digitalization, generalization, and differences in the Minimum Mapping Unit (MMU) between datasets. An inner buffer was applied to all datasets to reduce border overlap among classes; the mask from the ICNF was applied to remove burned areas, and NDVI rule based on Landsat 8 allowed to erase recent clear-cuts in the forest. Also, the Copernicus High-Resolution Layers (HRL) datasets from 2015 (latest available), namely Dominant Leaf Type (DLT) and Tree Cover Density (TCD) are used to distinguish between forest with more than 60% coverage (coniferous and broadleaf) such as Holm Oak and Stone Pine and between 10 and 60% (coniferous) for instance Open Maritime Pine. Next, temporal gap-filled monthly composites were created for the agricultural period in Portugal, ranging from October 2017 till September 2018. The composites provided data free of missing values in opposition to single date acquisition images. Finally, a pixel-based approach classification was carried out in the “Tejo and Sado” region of Portugal using Random Forest (RF). The resulting map achieves a 76% overall accuracy for 31 classes (17 land cover and 14 crop types). The RF algorithm captured the most relevant features for the classification from the cloud-free composites, mainly during the spring and summer and in the bands on the Red Edge, NIR and SWIR. Overall, the classification was more successful on the irrigated temporary crops whereas the grasslands presented the most complexity to classify as they were confused with other rainfed crops and burned areas

    Advancements in Multi-temporal Remote Sensing Data Analysis Techniques for Precision Agriculture

    Get PDF
    L'abstract Ăš presente nell'allegato / the abstract is in the attachmen

    A review of satellite-based global agricultural monitoring systems available for Africa

    Get PDF
    Abstract The increasing frequency and severity of extreme climatic events and their impacts are being realized in many regions of the world, particularly in smallholder crop and livestock production systems in Sub-Saharan Africa (SSA). These events underscore the need for timely early warning. Satellite Earth Observation (EO) availability, rapid developments in methodology to archive and process them through cloud services and advanced computational capabilities, continue to generate new opportunities for providing accurate, reliable, and timely information for decision-makers across multiple cropping systems and for resource-constrained institutions. Today, systems and tools that leverage these developments to provide open access actionable early warning information exist. Some have already been employed by early adopters and are currently operational in selecting national monitoring programs in Angola, Kenya, Rwanda, Tanzania, and Uganda. Despite these capabilities, many governments in SSA still rely on traditional crop monitoring systems, which mainly rely on sparse and long latency in situ reports with little to no integration of EO-derived crop conditions and yield models. This study reviews open-access operational agricultural monitoring systems available for Africa. These systems provide the best-available open-access EO data that countries can readily take advantage of, adapt, adopt, and leverage to augment national systems and make significant leaps (timeliness, spatial coverage and accuracy) of their monitoring programs. Data accessible (vegetation indices, crop masks) in these systems are described showing typical outputs. Examples are provided including crop conditions maps, and damage assessments and how these have integrated into reporting and decision-making. The discussion compares and contrasts the types of data, assessments and products can expect from using these systems. This paper is intended for individuals and organizations seeking to access and use EO to assess crop conditions who might not have the technical skill or computing facilities to process raw data into informational products

    Mapping smallholder cashew plantations to inform sustainable tree crop expansion in Benin

    Full text link
    Cashews are grown by over 3 million smallholders in more than 40 countries worldwide as a principal source of income. As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings. However, a lack of information on where and how cashew trees grow across the country hinders decision-making that could support increased cashew production and poverty alleviation. By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, newly developed deep learning algorithms, and large-scale ground truth datasets, we successfully produced the first national map of cashew in Benin and characterized the expansion of cashew plantations between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with Attention (STCA) model to map the distribution of cashew plantations, which can fully capture texture information from discriminative time steps during a growing season. We further developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to distinguish high-density versus low-density cashew plantations by automatic feature extraction and optimized clustering. Results show that the STCA model has an overall accuracy over 85% and the CASTC model achieved an overall accuracy of 76%. We found that the cashew area in Benin almost doubled from 2015 to 2021 with 60% of new plantation development coming from cropland or fallow land, while encroachment of cashew plantations into protected areas has increased by 55%. Only half of cashew plantations were high-density in 2021, suggesting high potential for intensification. Our study illustrates the power of combining high-resolution remote sensing imagery and state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous smallholder landscape

    Google Earth Engine cloud computing platform for remote sensing big data applications: a comprehensive review

    Get PDF
    Remote sensing (RS) systems have been collecting massive volumes of datasets for decades, managing and analyzing of which are not practical using common software packages and desktop computing resources. In this regard, Google has developed a cloud computing platform, called Google Earth Engine (GEE), to effectively address the challenges of big data analysis. In particular, this platformfacilitates processing big geo data over large areas and monitoring the environment for long periods of time. Although this platformwas launched in 2010 and has proved its high potential for different applications, it has not been fully investigated and utilized for RS applications until recent years. Therefore, this study aims to comprehensively explore different aspects of the GEE platform, including its datasets, functions, advantages/limitations, and various applications. For this purpose, 450 journal articles published in 150 journals between January 2010 andMay 2020 were studied. It was observed that Landsat and Sentinel datasets were extensively utilized by GEE users. Moreover, supervised machine learning algorithms, such as Random Forest, were more widely applied to image classification tasks. GEE has also been employed in a broad range of applications, such as Land Cover/land Use classification, hydrology, urban planning, natural disaster, climate analyses, and image processing. It was generally observed that the number of GEE publications have significantly increased during the past few years, and it is expected that GEE will be utilized by more users from different fields to resolve their big data processing challenges.Peer ReviewedPostprint (published version
    • 

    corecore