2,529 research outputs found

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented

    The design and implementation of fuzzy query processing on sensor networks

    Get PDF
    Sensor nodes and Wireless Sensor Networks (WSN) enable observation of the physical world in unprecedented levels of granularity. A growing number of environmental monitoring applications are being designed to leverage data collection features of WSN, increasing the need for efficient data management techniques and for comparative analysis of various data management techniques. My research leverages aspects of fuzzy database, specifically fuzzy data representation and fuzzy or flexible queries to improve upon the efficiency of existing data management techniques by exploiting the inherent uncertainty of the data collected by WSN. Herein I present my research contributions. I provide classification of WSN middleware to illustrate varying approaches to data management for WSN and identify a need to better handle the uncertainty inherent in data collected from physical environments and to take advantage of the imprecision of the data to increase the efficiency of WSN by requiring less information be transmitted to adequately answer queries posed by WSN monitoring applications. In this dissertation, I present a novel approach to querying WSN, in which semantic knowledge about sensor attributes is represented as fuzzy terms. I present an enhanced simulation environment that supports more flexible and realistic analysis by using cellular automata models to separately model the deployed WSN and the underlying physical environment. Simulation experiments are used to evaluate my fuzzy query approach for environmental monitoring applications. My analysis shows that using fuzzy queries improves upon other data management techniques by reducing the amount of data that needs to be collected to accurately satisfy application requests. This reduction in data transmission results in increased battery life within sensors, an important measure of cost and performance for WSN applications

    Towards Spatial Queries over Phenomena in Sensor Networks

    Get PDF
    Today, technology developments enable inexpensive production and deployment of tiny sensing and computing nodes. Networked through wireless radio, such senor nodes form a new platform, wireless sensor networks, which provide novel ability to monitor spatiotemporally continuous phenomena. By treating a wireless sensor network as a database system, users can pose SQL-based queries over phenomena without needing to program detailed sensor node operations. DBMS-internally, intelligent and energyefficient data collection and processing algorithms have to be implemented to support spatial query processing over sensor networks. This dissertation proposes spatial query support for two views of continuous phenomena: field-based and object-based. A field-based view of continuous phenomena depicts them as a value distribution over a geographical area. However, due to the discrete and comparatively sparse distribution of sensor nodes, estimation methods are necessary to generate a field-based query result, and it has to be computed collaboratively ‘in-the-network’ due to energy constraints. This dissertation proposes SWOP, an in-network algorithm using Gaussian Kernel estimation. The key contribution is the use of a small number of Hermite coefficients to approximate the Gaussian Kernel function for sub-clustered sensor nodes, and processes the estimation result efficiently. An object-based view of continuous phenomena is interested in aspects such as the boundary of an ‘interesting region’ (e.g. toxic plume). This dissertation presents NED, which provides object boundary detection in sensor networks. NED encodes partial event estimation results based on confidence levels into optimized, variable length messages exchanged locally among neighboring sensor nodes to save communication cost. Therefore, sensor nodes detect objects and boundaries based on moving averages to eliminate noise effects and enhance detection quality. Furthermore, the dissertation proposes the SNAKE-based approach, which uses deformable curves to track the spatiotemporal changes of such objects incrementally in sensor networks. In the proposed algorithm, only neighboring nodes exchange messages to maintain the curve structures. Based on in-network tracking of deformable curves, other types of spatial and spatiotemporal properties of objects, such as area, can be provided by the sensor network. The experimental results proved that our approaches are resource friendly within the constrained sensor networks, while providing high quality query results

    Multi-dimensional data indexing and range query processing via Voronoi diagram for internet of things

    Get PDF
    In a typical Internet of Things (IoT) deployment such as smart cities and Industry 4.0, the amount of sensory data collected from physical world is significant and wide-ranging. Processing large amount of real-time data from the diverse IoT devices is challenging. For example, in IoT environment, wireless sensor networks (WSN) are typically used for the monitoring and collecting of data in some geographic area. Spatial range queries with location constraints to facilitate data indexing are traditionally employed in such applications, which allows the querying and managing the data based on SQL structure. One particular challenge is to minimize communication cost and storage requirements in multi-dimensional data indexing approaches. In this paper, we present an energy- and time-efficient multidimensional data indexing scheme, which is designed to answer range query. Specifically, we propose data indexing methods which utilize hierarchical indexing structures, using binary space partitioning (BSP), such as kd-tree, quad-tree, k-means clustering, and Voronoi-based methods to provide more efficient routing with less latency. Simulation results demonstrate that the Voronoi Diagram-based algorithm minimizes the average energy consumption and query response time

    Data Collection and Aggregation in Mobile Sensing

    Get PDF
    Nowadays, smartphones have become ubiquitous and are playing a critical role in key aspects of people\u27s daily life such as communication, entertainment and social activities. Most smartphones are equipped with multiple embedded sensors such as GPS (Global Positioning System), accelerometer, camera, etc, and have diverse sensing capacity. Moreover, the emergence of wearable devices also enhances the sensing capabilities of smartphones since most wearable devices can exchange sensory data with smartphones via network interfaces. Therefore, mobile sensing have led to numerous innovative applications in various fields including environmental monitoring, transportation, healthcare, safety and so on. While all these applications are based on two critical techniques in mobile sensing, which are data collection and data aggregation, respectively. Data collection is to collect all the sensory data in the network while data aggregation is any process in which information is gathered and expressed in a summary form such as SUM or AVERAGE. Obviously, the above two problems can be solved by simply collect all the sensory data in the whole network. But that will lead to huge communication cost. This dissertation is to reduce the huge communication cost in data collection and data aggregation in mobile sensing where the following two technical routes are applied. The first technical route is to use sampling techniques such as uniform sampling or Bernoulli sampling. In this way, an aggregation result with acceptable error can be can be calculate while only a small part of mobile phones need to submit their sensory data. The second technical rout is location-based sensing in which every mobile phone submits its geographical position and the mobile sensing platform will use the submitted positions to filter useless sensory data. The experiment results indicate the proposed methods have high performance
    • …
    corecore