615 research outputs found

    Semantic Web Techniques to Support Interoperability in Distributed Networked Environments

    No full text
    We explore two Semantic Web techniques arising from ITA research into semantic alignment and interoperability in distributed networks. The first is POAF (Portable Ontology Aligned Fragments) which addresses issues relating to the portability and usage of ontology alignments. POAF uses an ontology fragmentation strategy to achieve portability, and enables subsequent usage through a form of automated ontology modularization. The second technique, SWEDER (Semantic Wrapping of Existing Data sources with Embedded Rules), is grounded in the creation of lightweight ontologies to semantically wrap existing data sources, to facilitate rapid semantic integration through representational homogeneity. The semantic integration is achieved through the creation of context ontologies which define the integrations and provide a portable definition of the integration rules in the form of embedded SPARQL construct clauses. These two Semantic Web techniques address important practical issues relevant to the potential future adoption of ontologies in distributed network environments

    MeLinDa: an interlinking framework for the web of data

    Get PDF
    The web of data consists of data published on the web in such a way that they can be interpreted and connected together. It is thus critical to establish links between these data, both for the web of data and for the semantic web that it contributes to feed. We consider here the various techniques developed for that purpose and analyze their commonalities and differences. We propose a general framework and show how the diverse techniques fit in the framework. From this framework we consider the relation between data interlinking and ontology matching. Although, they can be considered similar at a certain level (they both relate formal entities), they serve different purposes, but would find a mutual benefit at collaborating. We thus present a scheme under which it is possible for data linking tools to take advantage of ontology alignments.Comment: N° RR-7691 (2011

    A Data-Intensive Lightweight Semantic Wrapper Approach to Aid Information Integration

    No full text
    We argue for the flexible use of lightweight ontologies to aid information integration. Our proposed approach is grounded on the availability and exploitation of existing data sources in a networked environment such as the world wide web (instance data as it is commonly known in the description logic and ontology community). We have devised a mechanism using Semantic Web technologies that wraps each existing data source with semantic information, and we refer to this technique as SWEDER (Semantic Wrapping of Existing Data Sources with Embedded Rules). This technique provides representational homogeneity and a firm basis for information integration amongst these semantically enabled data sources. This technique also directly supports information integration though the use of context ontologies to align two or more semantically wrapped data sources and capture the rules that define these integrations. We have tested this proposed approach using a simple implementation in the domain of organisational and communication data and we speculate on the future directions for this lightweight approach to semantic enablement and contextual alignment of existing network-available data sources

    Towards engineering ontologies for cognitive profiling of agents on the semantic web

    Get PDF
    Research shows that most agent-based collaborations suffer from lack of flexibility. This is due to the fact that most agent-based applications assume pre-defined knowledge of agents’ capabilities and/or neglect basic cognitive and interactional requirements in multi-agent collaboration. The highlight of this paper is that it brings cognitive models (inspired from cognitive sciences and HCI) proposing architectural and knowledge-based requirements for agents to structure ontological models for cognitive profiling in order to increase cognitive awareness between themselves, which in turn promotes flexibility, reusability and predictability of agent behavior; thus contributing towards minimizing cognitive overload incurred on humans. The semantic web is used as an action mediating space, where shared knowledge base in the form of ontological models provides affordances for improving cognitive awareness

    Complex correspondences for query patterns rewriting

    Get PDF
    International audienceThis paper discusses the use of complex alignments in the task of automatic query patterns rewriting. We apply this approach in SWIP, a system that allows for querying RDF data from natural language-based queries, hiding the complexity of SPARQL. SWIP is based on the use of query patterns that characterise families of queries and that are instantiated with respect to the initial user query expressed in natural language. However, these patterns are specific to the vocabulary used to describe the data source to be queried. For rewriting query patterns, we experiment ontology matching approaches in order to find complex correspondences between two ontologies describing data sources. From the alignments and initial query patterns, we rewrite these patterns in order to be able to query the data described using the target ontology. These experiments have been carried out on an ontology on the music domain and DBpedia ontology

    Integrating building and urban semantics to empower smart water solutions

    Get PDF
    Current urban water research involves intelligent sensing, systems integration, proactive users and data-driven management through advanced analytics. The convergence of building information modeling with the smart water field provides an opportunity to transcend existing operational barriers. Such research would pave the way for demand-side management, active consumers, and demand-optimized networks, through interoperability and a system of systems approach. This paper presents a semantic knowledge management service and domain ontology which support a novel cloud-edge solution, by unifying domestic socio-technical water systems with clean and waste networks at an urban scale, to deliver value-added services for consumers and network operators. The web service integrates state of the art sensing, data analytics and middleware components. We propose an ontology for the domain which describes smart homes, smart metering, telemetry, and geographic information systems, alongside social concepts. This integrates previously isolated systems as well as supply and demand-side interventions, to improve system performance. A use case of demand-optimized management is introduced, and smart home application interoperability is demonstrated, before the performance of the semantic web service is presented and compared to alternatives. Our findings suggest that semantic web technologies and IoT can merge to bring together large data models with dynamic data streams, to support powerful applications in the operational phase of built environment systems

    Will this work for Susan? Challenges for delivering usable and useful generic linked data browsers

    No full text
    While we witness an explosion of exploration tools for simple datasets on Web 2.0 designed for use by ordinary citizens, the goal of a usable interface for supporting navigation and sense-making over arbitrary linked data has remained elusive. The purpose of this paper is to analyse why - what makes exploring linked data so hard? Through a user-centered use case scenario, we work through requirements for sense making with data to extract functional requirements and to compare these against our tools to see what challenges emerge to deliver a useful, usable knowledge building experience with linked data. We present presentation layer and heterogeneous data integration challenges and offer practical considerations for moving forward to effective linked data sensemaking tools

    Rewriting SELECT SPARQL queries from 1:n complex correspondences

    Get PDF
    This paper presents a mechanism for rewriting SPARQL queries based on complex ontology correspondences. While the usefulness of simple correspondences, involving single entities from both source and target ontologies, has long been recognized, query rewriting requires more expressive links between ontology entities expressing the true relationships between them. Here, complex correspondences, in the format 1:n, between overlapping ontologies are exploited for rewriting SELECT SPARQL queries, so that they can be expressed over different RDF data sets in the Linked Open Data. Our approach has been evaluated using two data sets, one from the agriculture domain and another based on a reduced set involving the ontologies from the OAEI Conference track
    • 

    corecore