788 research outputs found

    One-class support vector machines identify the language and default mode regions as common patterns of structural alterations in young children with autism spectrum disorders

    Get PDF
    The identification of reliable brain endophenotypes of autism spectrum disorders (ASD) has been hampered to date by the heterogeneity in the neuroanatomical abnormalities detected in this condition. To handle the complexity of neuroimaging data and to convert brain images in informative biomarkers of pathology, multivariate analysis techniques based on Support Vector Machines (SVM) have been widely used in several disease conditions. They are usually trained to distinguish patients from healthy control subjects by making a binary classification. Here, we propose the use of the One-Class Classification (OCC) or Data Description method that, in contrast to two-class classification, is based on a description of one class of objects only. This approach, by defining a multivariate normative rule on one class of subjects, allows recognizing examples from a different category as outliers. We applied the OCC to 314 regional features extracted from brain structural Magnetic Resonance Imaging (MRI) scans of young children with ASD (21 males and 20 females) and control subjects (20 males and 20 females), matched on age [range: 22-72 months of age; mean = 49 months] and non-verbal intelligence quotient (NVIQ) [range: 31-123; mean = 73]. We demonstrated that a common pattern of features characterize the ASD population. The OCC SVM trained on the group of ASD subjects showed the following performances in the ASD vs. controls separation: the area under the receiver operating characteristic curve (AUC) was 0.74 for the male and 0.68 for the female population, respectively. Notably, the ASD vs. controls discrimination results were maximized when evaluated on the subsamples of subjects with NVIQ = 70, leading to AUC = 0.81 for the male and AUC = 0.72 for the female populations, respectively. Language regions and regions from the default mode network-posterior cingulate cortex, pars opercularis and pars triangularis of the inferior frontal gyrus, and transverse temporal gyrus-contributed most to distinguishing individuals with ASD from controls, arguing for the crucial role of these areas in the ASD pathophysiology. The observed brain patterns associate preschoolers with ASD independently of their age, gender and NVIQ and therefore they are expected to constitute part of the ASD brain endophenotype

    Automatic Autism Spectrum Disorder Detection Using Artificial Intelligence Methods with MRI Neuroimaging: A Review

    Full text link
    Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these methods, magnetic resonance imaging (MRI) imaging modalities are of paramount importance to physicians. Clinicians rely on MRI modalities to diagnose ASD accurately. The MRI modalities are non-invasive methods that include functional (fMRI) and structural (sMRI) neuroimaging methods. However, the process of diagnosing ASD with fMRI and sMRI for specialists is often laborious and time-consuming; therefore, several computer-aided design systems (CADS) based on artificial intelligence (AI) have been developed to assist the specialist physicians. Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD. This study aims to review the automated detection of ASD using AI. We review several CADS that have been developed using ML techniques for the automated diagnosis of ASD using MRI modalities. There has been very limited work on the use of DL techniques to develop automated diagnostic models for ASD. A summary of the studies developed using DL is provided in the appendix. Then, the challenges encountered during the automated diagnosis of ASD using MRI and AI techniques are described in detail. Additionally, a graphical comparison of studies using ML and DL to diagnose ASD automatically is discussed. We conclude by suggesting future approaches to detecting ASDs using AI techniques and MRI neuroimaging

    Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: A review

    Get PDF
    Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these methods, magnetic resonance imaging (MRI) imaging modalities are of paramount importance to physicians. Clinicians rely on MRI modalities to diagnose ASD accurately. The MRI modalities are non-invasive methods that include functional (fMRI) and structural (sMRI) neuroimaging methods. However, diagnosing ASD with fMRI and sMRI for specialists is often laborious and time-consuming; therefore, several computer-aided design systems (CADS) based on artificial intelligence (AI) have been developed to assist specialist physicians. Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD. This study aims to review the automated detection of ASD using AI. We review several CADS that have been developed using ML techniques for the automated diagnosis of ASD using MRI modalities. There has been very limited work on the use of DL techniques to develop automated diagnostic models for ASD. A summary of the studies developed using DL is provided in the Supplementary Appendix. Then, the challenges encountered during the automated diagnosis of ASD using MRI and AI techniques are described in detail. Additionally, a graphical comparison of studies using ML and DL to diagnose ASD automatically is discussed. We suggest future approaches to detecting ASDs using AI techniques and MRI neuroimaging.Qatar National Librar

    Clinical Prediction from Structural Brain MRI Scans: A Large-Scale Empirical Study

    Get PDF
    Multivariate pattern analysis (MVPA) methods have become an important tool in neuroimaging, revealing complex associations and yielding powerful prediction models. Despite methodological developments and novel application domains, there has been little effort to compile benchmark results that researchers can reference and compare against. This study takes a significant step in this direction. We employed three classes of state-of-the-art MVPA algorithms and common types of structural measurements from brain Magnetic Resonance Imaging (MRI) scans to predict an array of clinically relevant variables (diagnosis of Alzheimer’s, schizophrenia, autism, and attention deficit and hyperactivity disorder; age, cerebrospinal fluid derived amyloid-β levels and mini-mental state exam score). We analyzed data from over 2,800 subjects, compiled from six publicly available datasets. The employed data and computational tools are freely distributed (https://www.nmr.mgh.harvard.edu/lab/mripredict), making this the largest, most comprehensive, reproducible benchmark image-based prediction experiment to date in structural neuroimaging. Finally, we make several observations regarding the factors that influence prediction performance and point to future research directions. Unsurprisingly, our results suggest that the biological footprint (effect size) has a dramatic influence on prediction performance. Though the choice of image measurement and MVPA algorithm can impact the result, there was no universally optimal selection. Intriguingly, the choice of algorithm seemed to be less critical than the choice of measurement type. Finally, our results showed that cross-validation estimates of performance, while generally optimistic, correlate well with generalization accuracy on a new dataset.BrightFocus Foundation (Alzheimer’s Disease pilot grant (AHAF A2012333))National Institutes of Health (U.S.) (K25 grant (NIBIB 1K25EB013649-01))National Center for Research Resources (U.S.) (U24 RR021382)National Institutes of Health. National Institute for Biomedical Imaging and Bioengineering (R01EB006758)National Institute of Neurological Disorders and Stroke (U.S.) (R01 NS052585-01, 1R21NS072652-01, 1R01NS070963, R01NS083534)National Institutes of Health (U.S.) (Blueprint for Neuroscience Research (5U01-MH093765)

    Contributions to the study of Austism Spectrum Brain conectivity

    Get PDF
    164 p.Autism Spectrum Disorder (ASD) is a largely prevalent neurodevelopmental condition with a big social and economical impact affecting the entire life of families. There is an intense search for biomarkers that can be assessed as early as possible in order to initiate treatment and preparation of the family to deal with the challenges imposed by the condition. Brain imaging biomarkers have special interest. Specifically, functional connectivity data extracted from resting state functional magnetic resonance imaging (rs-fMRI) should allow to detect brain connectivity alterations. Machine learning pipelines encompass the estimation of the functional connectivity matrix from brain parcellations, feature extraction and building classification models for ASD prediction. The works reported in the literature are very heterogeneous from the computational and methodological point of view. In this Thesis we carry out a comprehensive computational exploration of the impact of the choices involved while building these machine learning pipelines

    Machine Learning Based Autism Detection Using Brain Imaging

    Get PDF
    Autism Spectrum Disorder (ASD) is a group of heterogeneous developmental disabilities that manifest in early childhood. Currently, ASD is primarily diagnosed by assessing the behavioral and intellectual abilities of a child. This behavioral diagnosis can be subjective, time consuming, inconclusive, does not provide insight on the underlying etiology, and is not suitable for early detection. Diagnosis based on brain magnetic resonance imaging (MRI)—a widely used non- invasive tool—can be objective, can help understand the brain alterations in ASD, and can be suitable for early diagnosis. However, the brain morphological findings in ASD from MRI studies have been inconsistent. Moreover, there has been limited success in machine learning based ASD detection using MRI derived brain features. In this thesis, we begin by demonstrating that the low success in ASD detection and the inconsistent findings are likely attributable to the heterogeneity of brain alterations in ASD. We then show that ASD detection can be significantly improved by mitigating the heterogeneity with the help of behavioral and demographics information. Here we demonstrate that finding brain markers in well-defined sub-groups of ASD is easier and more insightful than identifying markers across the whole spectrum. Finally, our study focused on brain MRI of a pediatric cohort (3 to 4 years) and achieved a high classification success (AUC of 95%). Results of this study indicate three main alterations in early ASD brains: 1) abnormally large ventricles, 2) highly folded cortices, and 3) low image intensity in white matter regions suggesting myelination deficits indicative of decreased structural connectivity. Results of this thesis demonstrate that the meaningful brain markers of ASD can be extracted by applying machine learning techniques on brain MRI data. This data-driven technique can be a powerful tool for early detection and understanding brain anatomical underpinnings of ASD

    Evaluation of altered functional connections in male children with autism spectrum disorders on multiple-site data optimized with machine learning

    Get PDF
    No univocal and reliable brain-based biomarkers have been detected to date in Autism Spectrum Disorders (ASD). Neuroimaging studies have consistently revealed alterations in brain structure and function of individuals with ASD; however, it remains difficult to ascertain the extent and localization of affected brain networks. In this context, the application of Machine Learning (ML) classification methods to neuroimaging data has the potential to contribute to a better distinction between subjects with ASD and typical development controls (TD). This study is focused on the analysis of resting-state fMRI data of individuals with ASD and matched TD, available within the ABIDE collection. To reduce the multiple sources of heterogeneity that impact on understanding the neural underpinnings of autistic condition, we selected a subgroup of 190 subjects (102 with ASD and 88 TD) according to the following criteria: male children (age range: 6.5–13 years); rs-fMRI data acquired with open eyes; data from the University sites that provided the largest number of scans (KKI, NYU, UCLA, UM). Connectivity values were evaluated as the linear correlation between pairs of time series of brain areas; then, a Linear kernel Support Vector Machine (L-SVM) classification, with an inter-site cross-validation scheme, was carried out. A permutation test was conducted to identify over-connectivity and under-connectivity alterations in the ASD group. The mean L-SVM classification performance, in terms of the area under the ROC curve (AUC), was 0.75 ± 0.05. The highest performance was obtained using data from KKI, NYU and UCLA sites in training and data from UM as testing set (AUC = 0.83). Specifically, stronger functional connectivity (FC) in ASD with respect to TD involve (p < 0.001) the angular gyrus with the precuneus in the right (R) hemisphere, and the R frontal operculum cortex with the pars opercularis of the left (L) inferior frontal gyrus. Weaker connections in ASD group with respect to TD are the intra-hemispheric R temporal fusiform cortex with the R hippocampus, and the L supramarginal gyrus with L planum polare. The results indicate that both under-and over-FC occurred in a selected cohort of ASD children relative to TD controls, and that these functional alterations are spread in different brain networks

    Interrogating autism from a multidimensional perspective: an integrative framework.

    Get PDF
    Autism Spectrum Disorder (ASD) is a condition characterized by social and behavioral impairments, affecting approximately 1 in every 44 children in the United States. Common symptoms include difficulties in communication, interpersonal interactions, and behavior. While symptoms can manifest as early as infancy, obtaining an accurate diagnosis may require multiple visits to a pediatric specialist due to the subjective nature of the assessment, which may yield varying scores from different specialists. Despite growing evidence of the role of differences in brain development and/or environmental and/or genetic factors in autism development, the exact pathology of this disorder has yet to be fully elucidated by scientists. At present, the diagnosis of ASD typically involves a set of gold-standard diagnostic evaluations, such as the Autism Diagnostic Observation Schedule (ADOS), the Autism Diagnostic Interview-Revised (ADI-R), and the more cost-effective Social Responsive Scale (SRS). Administering these diagnostic tests, which involve assessing communication and behavioral patterns, along with obtaining a clinical history, requires the expertise of a team of qualified clinicians. This process is time-consuming, effortful, and involves a degree of subjectivity due to the reliance on clinical judgment. Aside from conventional observational assessments, recent developments in neuroimaging and machine learning offer a fast and objective alternative for diagnosing ASD using brain imaging. This comprehensive work explores the use of different imaging modalvities, namely structural MRI (sMRI) and resting-state functional MRI (rs-fMRI), to investigate their potential for autism diagnosis. The proposed study aims to offer a new approach and perspective in comprehending ASD as a multidimensional problem, within a behavioral space that is defined by one of the available ASD diagnostic tools. This dissertation introduces a thorough investigation of the utilization of feature engineering tools to extract distinctive insights from various brain imaging modalities, including the application of novel feature representations. Additionally, the use of a machine learning framework to aid in the precise classification of individuals with autism is also explored in detail. This extensive research, which draws upon large publicly available datasets, sheds light on the influence of various decisions made throughout the pipeline on diagnostic accuracy. Furthermore, it identifies brain regions that may be impacted and contribute to an autism diagnosis. The attainment of high global state-of-the-art cross-validated, and hold-out set accuracy validates the advantages of feature representation and engineering in extracting valuable information, as well as the potential benefits of employing neuroimaging for autism diagnosis. Furthermore, a suggested diagnostic report has been put forth to assist physicians in mapping diagnoses to underlying neuroimaging markers. This approach could enable an earlier, automated, and more objective personalized diagnosis
    • …
    corecore