2,657 research outputs found

    Distributed Processing of Generalized Graph-Pattern Queries in SPARQL 1.1

    Get PDF
    We propose an efficient and scalable architecture for processing generalized graph-pattern queries as they are specified by the current W3C recommendation of the SPARQL 1.1 "Query Language" component. Specifically, the class of queries we consider consists of sets of SPARQL triple patterns with labeled property paths. From a relational perspective, this class resolves to conjunctive queries of relational joins with additional graph-reachability predicates. For the scalable, i.e., distributed, processing of this kind of queries over very large RDF collections, we develop a suitable partitioning and indexing scheme, which allows us to shard the RDF triples over an entire cluster of compute nodes and to process an incoming SPARQL query over all of the relevant graph partitions (and thus compute nodes) in parallel. Unlike most prior works in this field, we specifically aim at the unified optimization and distributed processing of queries consisting of both relational joins and graph-reachability predicates. All communication among the compute nodes is established via a proprietary, asynchronous communication protocol based on the Message Passing Interface

    Adding Logical Operators to Tree Pattern Queries on Graph-Structured Data

    Full text link
    As data are increasingly modeled as graphs for expressing complex relationships, the tree pattern query on graph-structured data becomes an important type of queries in real-world applications. Most practical query languages, such as XQuery and SPARQL, support logical expressions using logical-AND/OR/NOT operators to define structural constraints of tree patterns. In this paper, (1) we propose generalized tree pattern queries (GTPQs) over graph-structured data, which fully support propositional logic of structural constraints. (2) We make a thorough study of fundamental problems including satisfiability, containment and minimization, and analyze the computational complexity and the decision procedures of these problems. (3) We propose a compact graph representation of intermediate results and a pruning approach to reduce the size of intermediate results and the number of join operations -- two factors that often impair the efficiency of traditional algorithms for evaluating tree pattern queries. (4) We present an efficient algorithm for evaluating GTPQs using 3-hop as the underlying reachability index. (5) Experiments on both real-life and synthetic data sets demonstrate the effectiveness and efficiency of our algorithm, from several times to orders of magnitude faster than state-of-the-art algorithms in terms of evaluation time, even for traditional tree pattern queries with only conjunctive operations.Comment: 16 page

    Towards Streaming Evaluation of Queries with Correlation in Complex Event Processing

    Get PDF
    Complex event processing (CEP) has gained a lot of attention for evaluating complex patterns over high-throughput data streams. Recently, new algorithms for the evaluation of CEP patterns have emerged with strong guarantees of efficiency, i.e. constant update-time per tuple and constant-delay enumeration. Unfortunately, these techniques are restricted for patterns with local filters, limiting the possibility of using joins for correlating the data of events that are far apart. In this paper, we embark on the search for efficient evaluation algorithms of CEP patterns with joins. We start by formalizing the so-called partition-by operator, a standard operator in data stream management systems to correlate contiguous events on streams. Although this operator is a restricted version of a join query, we show that partition-by (without iteration) is equally expressive as hierarchical queries, the biggest class of full conjunctive queries that can be evaluated with constant update-time and constant-delay enumeration over streams. To evaluate queries with partition-by we introduce an automata model, called chain complex event automata (chain-CEA), an extension of complex event automata that can compare data values by using equalities and disequalities. We show that this model admits determinization and is expressive enough to capture queries with partition-by. More importantly, we provide an algorithm with constant update time and constant delay enumeration for evaluating any query definable by chain-CEA, showing that all CEP queries with partition-by can be evaluated with these strong guarantees of efficiency

    On the Benefits of Non-Canonical Filtering in Publish/Subscribe Systems

    Get PDF
    Current matching approaches in pub/sub systems only allow conjunctive subscriptions. Arbitrary subscriptions have to be transformed into canonical expressions, e.g., DNFs, and need to be treated as several conjunctive subscriptions. This technique is known from database systems and allows us to apply more efficient filtering algorithms. Since pub/sub systems are the contrary to traditional database systems, it is questionable if filtering several canonical subscriptions is the most efficient and scalable way of dealing with arbitrary subscriptions. In this paper we show that our filtering approach supporting arbitrary Boolean subscriptions is more scalable and efficient than current matching algorithms requiring transformations of subscriptions into DNFs

    Compressed k2-Triples for Full-In-Memory RDF Engines

    Get PDF
    Current "data deluge" has flooded the Web of Data with very large RDF datasets. They are hosted and queried through SPARQL endpoints which act as nodes of a semantic net built on the principles of the Linked Data project. Although this is a realistic philosophy for global data publishing, its query performance is diminished when the RDF engines (behind the endpoints) manage these huge datasets. Their indexes cannot be fully loaded in main memory, hence these systems need to perform slow disk accesses to solve SPARQL queries. This paper addresses this problem by a compact indexed RDF structure (called k2-triples) applying compact k2-tree structures to the well-known vertical-partitioning technique. It obtains an ultra-compressed representation of large RDF graphs and allows SPARQL queries to be full-in-memory performed without decompression. We show that k2-triples clearly outperforms state-of-the-art compressibility and traditional vertical-partitioning query resolution, remaining very competitive with multi-index solutions.Comment: In Proc. of AMCIS'201
    corecore