76 research outputs found

    On-chip delay measurement for in-field test of FPGAs

    Get PDF
    Avoidance of delay-related failures due to aging phenomena is an important issue of current VLSI systems. Delay measurement in field is effective for detection of aging-induced delay increase. This paper proposes a delay measurement method using BIST (Built-In Self-Test) in an FPGA. The proposed method consists of variable test timing generation using an embedded PLL, BIST-based delay measurement, and correction of the measured delay with reflecting temperature variance in field. In on-chip delay measurement of the proposed method, the fastest operating speed is checked by repeating delay test with several test timings. Because circuit delay is influenced by temperature during measurement, the measured delay is then corrected according to the temperature during testing. Based on test log including the corrected delay, delay degradation and aging detection can be grasped. In evaluation experiments of the propose method implemented on an Intel Cyclone IV FPGA device (60nm technology), variable test timing generation realized 96 ps timing step resolution (that is below 1% of the system clock), correction process for measured delay could reduce influence of temperature variation. Furthermore, its feasibility of the proposed method for aging detection is discussed in this paper.24th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC 2019), December 1-3, 2019, Kyoto, Japa

    inSense: A Variation and Fault Tolerant Architecture for Nanoscale Devices

    Get PDF
    Transistor technology scaling has been the driving force in improving the size, speed, and power consumption of digital systems. As devices approach atomic size, however, their reliability and performance are increasingly compromised due to reduced noise margins, difficulties in fabrication, and emergent nano-scale phenomena. Scaled CMOS devices, in particular, suffer from process variations such as random dopant fluctuation (RDF) and line edge roughness (LER), transistor degradation mechanisms such as negative-bias temperature instability (NBTI) and hot-carrier injection (HCI), and increased sensitivity to single event upsets (SEUs). Consequently, future devices may exhibit reduced performance, diminished lifetimes, and poor reliability. This research proposes a variation and fault tolerant architecture, the inSense architecture, as a circuit-level solution to the problems induced by the aforementioned phenomena. The inSense architecture entails augmenting circuits with introspective and sensory capabilities which are able to dynamically detect and compensate for process variations, transistor degradation, and soft errors. This approach creates ``smart\u27\u27 circuits able to function despite the use of unreliable devices and is applicable to current CMOS technology as well as next-generation devices using new materials and structures. Furthermore, this work presents an automated prototype implementation of the inSense architecture targeted to CMOS devices and is evaluated via implementation in ISCAS \u2785 benchmark circuits. The automated prototype implementation is functionally verified and characterized: it is found that error detection capability (with error windows from ≈\approx30-400ps) can be added for less than 2\% area overhead for circuits of non-trivial complexity. Single event transient (SET) detection capability (configurable with target set-points) is found to be functional, although it generally tracks the standard DMR implementation with respect to overheads

    On-Chip Delay Measurement for Degradation Detection and Its Evaluation under Accelerated Life Test

    Get PDF
    Periodical delay measurement in field is useful for not only detection of delay-related faults but also prediction of faults due to aging. Logic BIST with variable test clock generation enables on-chip delay measurement in field. This paper addresses a delay measurement scheme based on logic BIST and gives experiment results to observe aging phenomenon of test chips under accelerated life test. The measurement scheme consists of scan-based logic BIST, a variable test clock generator, and digital temperature and voltage sensors. The sensors are used to compensate measured delay values for temperature and voltage variations in field. Evaluation using SPICE simulation shows that the scheme can measure a circuit delay with resolution of 92 ps. The delay measurement scheme is also implemented on fabricated test chips with 180 nm CMOS technology and accelerated test is performed using ATE and burn-in equipment. Experimental results show that a circuit delay increased 552 ps when accelerated the chip for 3000 hours. It is confirmed that the on-chip delay measurement scheme has enough accuracy for detection of aging-induced delay increase.26th IEEE International Symposium on On-Line Testing and Robust System Design (IOLTS 2020), 13-15 July, 2020, Napoli, ItalyïŒˆæ–°ćž‹ă‚łăƒ­ăƒŠæ„ŸæŸ“æ‹Ąć€§ă«äŒŽă„ă€ă‚Șăƒłăƒ©ă‚€ăƒłé–‹ć‚Źă«ć€‰æ›Ž

    System-level design and RF front-end implementation for a 3-10ghz multiband-ofdm ultrawideband receiver and built-in testing techniques for analog and rf integrated circuits

    Get PDF
    This work consists of two main parts: a) Design of a 3-10GHz UltraWideBand (UWB) Receiver and b) Built-In Testing Techniques (BIT) for Analog and RF circuits. The MultiBand OFDM (MB-OFDM) proposal for UWB communications has received significant attention for the implementation of very high data rate (up to 480Mb/s) wireless devices. A wideband LNA with a tunable notch filter, a downconversion quadrature mixer, and the overall radio system-level design are proposed for an 11-band 3.4-10.3GHz direct conversion receiver for MB-OFDM UWB implemented in a 0.25mm BiCMOS process. The packaged IC includes an RF front-end with interference rejection at 5.25GHz, a frequency synthesizer generating 11 carrier tones in quadrature with fast hopping, and a linear phase baseband section with 42dB of gain programmability. The receiver IC mounted on a FR-4 substrate provides a maximum gain of 67-78dB and NF of 5-10dB across all bands while consuming 114mA from a 2.5V supply. Two BIT techniques for analog and RF circuits are developed. The goal is to reduce the test cost by reducing the use of analog instrumentation. An integrated frequency response characterization system with a digital interface is proposed to test the magnitude and phase responses at different nodes of an analog circuit. A complete prototype in CMOS 0.35mm technology employs only 0.3mm2 of area. Its operation is demonstrated by performing frequency response measurements in a range of 1 to 130MHz on 2 analog filters integrated on the same chip. A very compact CMOS RF RMS Detector and a methodology for its use in the built-in measurement of the gain and 1dB compression point of RF circuits are proposed to address the problem of on-chip testing at RF frequencies. The proposed device generates a DC voltage proportional to the RMS voltage amplitude of an RF signal. A design in CMOS 0.35mm technology presents and input capacitance <15fF and occupies and area of 0.03mm2. The application of these two techniques in combination with a loop-back test architecture significantly enhances the testability of a wireless transceiver system

    Design for reliability applied to RF-MEMS devices and circuits issued from different TRL environments

    Get PDF
    Ces travaux de thĂšse visent Ă  aborder la fiabilitĂ© des composants RF-MEMS (commutateurs en particulier) pendant la phase de conception en utilisant diffĂ©rents approches de procĂ©dĂ©s de fabrication. Ça veut dire que l'intĂ©rĂȘt est focalisĂ© en comment Ă©liminer ou diminuer pendant la conception les effets des mĂ©canismes de dĂ©faillance plus importants au lieu d'Ă©tudier la physique des mĂ©canismes. La dĂ©tection des diffĂ©rents mĂ©canismes de dĂ©faillance est analysĂ©e en utilisant les performances RF du dispositif et le dĂ©veloppement d'un circuit Ă©quivalent. Cette nouvelle approche permet Ă  l'utilisateur final savoir comment les performances vont Ă©voluer pendant le cycle de vie. La classification des procĂ©dĂ©s de fabrication a Ă©tĂ© faite en utilisant le Technology Readiness Level du procĂ©dĂ© qui Ă©value le niveau de maturitĂ© de la technologie. L'analyse de diffĂ©rentes approches de R&D est dĂ©crite en mettant l'accent sur les diffĂ©rences entre les niveaux dans la classification TRL. Cette thĂšse montre quelle est la stratĂ©gie optimale pour aborder la fiabilitĂ© en dĂ©marrant avec un procĂ©dĂ© trĂšs flexible (LAAS-CNRS comme exemple de baisse TRL), en continuant avec une approche composant (CEA-Leti comme moyenne TRL) et en finissant avec un procĂ©dĂ© standard co-intĂ©grĂ© CMOS-MEMS (IHP comme haute TRL) dont les modifications sont impossibles.This thesis is intended to deal with reliability of RF-MEMS devices (switches, in particular) from a designer point of view using different fabrication process approaches. This means that the focus will be on how to eliminate or alleviate at the design stage the effects of the most relevant failure mechanisms in each case rather than studying the underlying physics of failure. The detection of the different failure mechanisms are investigated using the RF performance of the device and the developed equivalent circuits. This novel approach allows the end-user to infer the evolution of the device performance versus time going one step further in the Design for Reliability in RF-MEMS. The division of the fabrication process has been done using the Technology Readiness Level of the process. It assesses the maturity of the technology prior to incorporating it into a system or subsystem. An analysis of the different R&D approaches will be presented by highlighting the differences between the different levels in the TRL classification. This thesis pretend to show how reliability can be improved regarding the approach of the fabrication process starting from a very flexible one (LAAS-CNRS as example of low-TRL) passing through a component approach (CEA-Leti as example of medium-TRL) and finishing with a standard co-integrated CMOS-MEMS process (IHP example of high TRL)

    Projeto de Malha de Captura de Fase AutocalibrĂĄvel

    Get PDF
    O impacto das variaçÔes de processo e desvios "intra-die" no fabrico de circuitos analĂłgicos e de sinal misto (AMS), nomeadamente no rendimento do fabrico, em custos e confiança, tornaram-se crĂ­ticos com a adoção de tecnologias MOS sub- micromĂ©tricas. Quando em operação, a sensibilidade dos circuitos a grandezas ambientais, como temperatura, tensĂŁo e interferĂȘncias de outros blocos, gera novas fontes de variabilidade. Perante estes desvios, circuitos de alto desempenho requerem a integração de metodologias de calibração que facilitem a correção dos parĂąmetros de desempenho apĂłs fabrico e o ajuste dos mesmos quando em operação. Este circuito adicional pode representar uma pequena fração adicional da ĂĄrea total de circuito e da potĂȘncia consumida, mas ainda assim pode resultar mais eficiente em ĂĄrea e energia do que qualquer sobredimensionamento analĂłgico ou processo auxiliar puramente digital de detecção e correção.The impacts of process variations and intra-die device mismatches of analog and mixed-signal (AMS) circuits, namely regarding fabrication yield, costs, and reliability have become critical with the adoption of deep sub-micron MOS technologies. When in operation, circuits' sensitivity to environmental quantities, such as temperature, voltage, as well as interferences originating from other blocks, render new sources of variability. High performance circuits require the adoption of built-in calibration and test facilities which facilitate tuning performance parameters after fabrication and correcting them when in operation. This extra added circuitry may represent a small fraction of total circuit area and power, but still it may be more area- and power- efficient than either analog "overdesign" or purely digital detection and correction

    MEMS Accelerometers

    Get PDF
    Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc

    Precise Timing of Digital Signals: Circuits and Applications

    Get PDF
    With the rapid advances in process technologies, the performance of state-of-the-art integrated circuits is improving steadily. The drive for higher performance is accompanied with increased emphasis on meeting timing constraints not only at the design phase but during device operation as well. Fortunately, technology advancements allow for even more precise control of the timing of digital signals, an advantage which can be used to provide solutions that can address some of the emerging timing issues. In this thesis, circuit and architectural techniques for the precise timing of digital signals are explored. These techniques are demonstrated in applications addressing timing issues in modern digital systems. A methodology for slow-speed timing characterization of high-speed pipelined datapaths is proposed. The technique uses a clock-timing circuit to create shifted versions of a slow-speed clock. These clocks control the data flow in the pipeline in the test mode. Test results show that the design provides an average timing resolution of 52.9ps in 0.18ÎŒm CMOS technology. Results also demonstrate the ability of the technique to track the performance of high-speed pipelines at a reduced clock frequency and to test the clock-timing circuit itself. In order to achieve higher resolutions than that of an inverter/buffer stage, a differential (vernier) delay line is commonly used. To allow for the design of differential delay lines with programmable delays, a digitally-controlled delay-element is proposed. The delay element is monotonic and achieves a high degree of transfer characteristics' (digital code vs. delay) linearity. Using the proposed delay element, a sub-1ps resolution is demonstrated experimentally in 0.18ÎŒm CMOS. The proposed delay element with a fixed delay step of 2ps is used to design a high-precision all-digital phase aligner. High-precision phase alignment has many applications in modern digital systems such as high-speed memory controllers, clock-deskew buffers, and delay and phase-locked loops. The design is based on a differential delay line and a variation tolerant phase detector using redundancy. Experimental results show that the phase aligner's range is from -264ps to +247ps which corresponds to an average delay step of approximately 2.43ps. For various input phase difference values, test results show that the difference is reduced to less than 2ps at the output of the phase aligner. On-chip time measurement is another application that requires precise timing. It has applications in modern automatic test equipment and on-chip characterization of jitter and skew. In order to achieve small conversion time, a flash time-to-digital converter is proposed. Mismatch between the various delay comparators limits the time measurement precision. This is demonstrated through an experiment in which a 6-bit, 2.5ps resolution flash time-to-digital converter provides an effective resolution of only 4-bits. The converter achieves a maximum conversion rate of 1.25GSa/s

    Conception pour la testabilité des systÚmes biomédicaux implantables

    Get PDF
    Architecture générale des systÚmes implantables -- Principes de stimulation électrique -- Champs d'application des systÚmes implantables -- Les particularités des circuits implantables -- Tendance future -- Conception pour la testabilité de la partie numérique des circuits implantables -- "Desigh and realization of an accurate built-in current sensor for Iddq testing and power dissipation measurement -- Conception pour la testabilité de la partie analogique des circuits implantables -- BIST for digital-to-analog and Analogo-to-digital converters -- Efficient and accurate testing of analog-to-digital converters using oscillation test method -- Design for testability of Embedded integrated operational amplifiers -- Vérification des interfaces bioélectroniques des systÚmes implantables -- Monitorin the electrode and lead failures in implanted microstimulators and sensors -- Capteurs de température intégrés pour la vérification de l'état thermique des puces dédiées -- Built-in temperature sensors for on-line thermal monitoring of microelectronic structures -- Un protocole de communication fiable pour la programmation et la télémétrie des systÚme implantables -- A reliable communication protoco for externally controlled biomedical implanted devices
    • 

    corecore